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Density-Guided Response Optimization: Community-Grounded Alignment via

Implicit Acceptance Signals

PATRICK GERARD, Information Sciences Institute, University of Southern California, USA
SVITLANA VOLKOVA, Aptima Inc., USA

Language models deployed in online communities must adapt to norms that vary across social, cultural, and domain-specific contexts.
Prior alignment approaches rely on explicit preference supervision or predefined principles, which are effective for well-resourced
settings but exclude most online communities—particularly those without institutional backing, annotation infrastructure, or organized
around sensitive topics—where preference elicitation is costly, ethically fraught, or culturally misaligned.

We observe that communities already express preferences implicitly through what content they accept, engage with, and allow to
persist. We show that this acceptance behavior induces measurable geometric structure in representation space: accepted responses
occupy coherent, high-density regions that reflect community-specific norms, while rejected content falls in sparser or misaligned
areas. We operationalize this structure as an implicit preference signal for alignment and introduce density-guided response optimization
(DGRO), a method that aligns language models to community norms without requiring explicit preference labels.

Using labeled preference data, we demonstrate that local density recovers pairwise community judgments, indicating that geometric
structure encodes meaningful preference signal. We then apply DGRO in annotation-scarce settings across diverse communities
spanning platform, topic, and language. DGRO-aligned models consistently produce responses preferred by human annotators, domain
experts, and model-based judges over supervised and prompt-based baselines. We position DGRO as a practical alignment alternative
for communities where explicit preference supervision is unavailable or misaligned with situated practices, and discuss the implications

and risks of learning from emergent acceptance behavior.

CCS Concepts: » Computing methodologies — Natural language generation; Learning from implicit feedback; « Human-centered

computing — Social content sharing.
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1 Introduction

Language models increasingly interact with online communities whose norms, values, and communicative conventions
vary widely across social, cultural, and domain-specific contexts. What counts as an appropriate response depends not
only on topic, but on situated expectations around tone, evidence, empathy, authority, and care. A question about weight

loss, for example, calls for fundamentally different responses in a medical advice forum, a peer support community, or an
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2 Gerard et al.

academic discussion space—not because the underlying facts differ, but because the social meanings and potential harms
of speech differ across contexts. Capturing these distinctions is essential not only for safe and effective deployment of
language models, but also for broader questions of algorithmic governance: who defines acceptable behavior, whose
values are encoded, and how those values are operationalized in deployed systems.

Existing approaches to language model alignment have largely addressed these questions through explicit preference
supervision. Reinforcement Learning from Human Feedback (RLHF) and related methods rely on annotated preference
data to guide model behavior [13, 41], while Direct Preference Optimization (DPO) simplifies optimization but retains
dependence on labeled comparisons [44]. Constitutional Al further reduces human annotation by introducing principle-
based critiques [3]. While effective in settings where preferences can be clearly articulated and externally specified, these
approaches presuppose that normative criteria are stable, consensual, and ethically straightforward to elicit. In practice,
however, many online communities—particularly marginalized, informal, or sensitive ones—lack the institutional
capacity, shared language, or ethical conditions required for explicit preference annotation. In such settings, asking
external annotators to define “appropriate” behavior risks misrepresentation, cultural mismatch, or harm.

At the same time, community norms are not unexpressed. Online communities continuously enact and negotiate
standards of appropriateness through moderation, participation, and collective attention. Content that aligns with
community expectations is more likely to persist, receive engagement, and become part of ongoing discourse, while
misaligned content is ignored, down-ranked, or removed. Importantly, these acceptance patterns are shaped not only
by individual preferences, but also by power, platform affordances, and governance structures within the community.
As such, behavioral acceptance should not be treated as normative endorsement or consent. Rather, it constitutes a
descriptive signal of how norms are operationalized in practice, reflecting the values of those who are most able or
willing to participate.

Building on prior work on implicit behavioral signals in recommender systems and information retrieval [26, 30],
we study whether these naturally occurring acceptance patterns give rise to recoverable structure in representation
space. We observe that responses accepted by a community are not randomly distributed; instead, they tend to cluster
in coherent, high-density regions of embedding space, which we refer to as a community’s acceptance manifold. This
structure captures what a community treats as permissible or contextually normal, as enacted through collective
behavior rather than prescribed by external rules. We emphasize that this manifold reflects descriptive regularities in
community practice, not an ethical claim about which norms ought to be learned or deployed.

We operationalize this observation through Density-Guided Response Optimization (DGRO), a method that uses
local density in a community’s embedding space as an implicit preference signal for alignment. DGRO does not assume
that community norms are universally desirable or stable; instead, it provides a mechanism for studying and modeling
how norms manifest in behavior when explicit preference supervision is unavailable or inappropriate. We first validate
the underlying manifold hypothesis on labeled preference data, showing that local density correlates monotonically
with observed human judgments. We then demonstrate that this signal can substitute for explicit preference annotations
within standard preference optimization objectives. Finally, we apply DGRO in annotation-scarce settings across diverse
communities, including eating disorder support spaces and Russian-language conflict documentation forums, and
evaluate whether aligned models produce responses judged as more contextually appropriate and authentic.

This work makes three contributions. First, we provide empirical evidence that community acceptance behavior
induces structured, locally coherent geometry in representation space that encodes recoverable preference signal.
Second, we introduce DGRO as a practical, annotation-free mechanism for leveraging this structure in preference-based

alignment. Third, we analyze the ethical implications and limitations of learning from acceptance behavior, including
Manuscript submitted to ACM
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Density-Guided Response Optimization: Community-Grounded Alignment via Implicit Acceptance Signals 3

risks of bias amplification, exclusion, and manipulation, and situate DGRO as a descriptive alignment tool whose

deployment requires careful governance and oversight.

2 Related Work

Alignment from Explicit Preferences Most modern alignment methods assume access to explicit human preference
supervision. Reinforcement Learning from Human Feedback (RLHF) learns a reward model from annotated pairwise
comparisons and optimizes a policy via reinforcement learning [13, 41]. While effective, this paradigm requires large
volumes of carefully curated preference data and a multi-stage training pipeline. Direct Preference Optimization (DPO)
simplifies optimization by removing the reward model and reinforcement learning stage, but still fundamentally relies
on explicit preference labels [44]. Constitutional Al further reduces human annotation by substituting Al-generated
critiques guided by predefined principles [3], yet this shifts the burden to principle specification and presumes that
normative criteria can be articulated a priori. Across these approaches, alignment is framed as supervised learning from

observable preferences, limiting applicability in settings where preferences are implicit, emergent, or difficult to elicit.

Community Norms and Domain-Specific NLP A growing body of NLP research emphasizes the importance of
cultural, social, and community-specific norms, particularly in low-resource or marginalized contexts [9, 37]. Domain
adaptation and specialization techniques such as BioBERT and LegalBERT demonstrate the value of tailoring models
to specific domains, but typically require substantial labeled data [6, 10, 34]. Ethical NLP work further argues for
embedding social values and community perspectives into model design [7, 28, 35], yet little work has explored how
such norms can be learned operationally from naturally occurring community behavior. Our approach contributes
a concrete mechanism for grounding alignment in community norms by inferring them directly from patterns of
acceptance, without requiring explicit annotation or predefined value schemas.

Beyond linguistic variation, work in social computing and HCI highlights that community norms are not merely
emergent patterns of language use, but are actively shaped through moderation practices, governance structures,
and participation asymmetries [29, 38, 40]. These dynamics raise questions of legitimacy and representation: whose
behavior contributes to observable norms, and whose voices are systematically excluded. While prior NLP work has
emphasized the importance of respecting community norms, relatively little research has explored how such norms
can be operationally inferred from naturally occurring community behavior without relying on explicit annotation or

predefined value schemas.

Implicit Behavioral Signals and (the Limits of) Revealed Preference A large body of work has explored learning
from implicit behavioral signals, such as clicks, dwell time, and interaction patterns, particularly in recommender systems
and information retrieval [26, 30]. These signals are attractive because they are abundant and naturally occurring, but
they are also indirect: they reflect behavior mediated by platform affordances, incentives, and power rather than explicit
judgments of quality or appropriateness. Prior work has shown that optimizing directly for engagement can distort
model behavior, amplifying polarized, sensational, or emotionally charged content [5].

A long line of critique cautions against equating observed behavior with normative endorsement or consent,
particularly in platform-mediated environments [22, 38]. In this work, we therefore treat acceptance signals as descriptive
evidence of how norms are enacted in practice rather than as ethically authoritative preferences. Our goal is not to
maximize engagement or infer individual utilities, but to recover community-level regularities in what is treated as

acceptable within specific contexts.
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4 Gerard et al.

Density and Geometry in Representation Space Density estimation has a long history in statistics, with classical
approaches such as kernel density estimation and Gaussian mixture models providing flexible non-parametric tools
[43]. Recent advances in neural density estimation enable scalable likelihood modeling in high-dimensional spaces,
including autoregressive models and normalizing flows [15, 42, 45]. Separately, work on representation geometry in
NLP has shown that linguistic representations occupy structured, low-dimensional manifolds in embedding space
[2, 36]. However, these techniques have primarily been used for generative modeling or representation analysis, rather
than for norm inference or alignment. Building on these works, our approach interprets local density in embedding
space as a community-conditioned acceptance signal, using geometric structure as supervision for alignment without

explicit preference labels.

3 Method

Our goal is to extract an alignment signal from naturally occurring community behavior without relying on explicit
preference annotations. We build on the observation—well established in both social computing and recommender
systems—that communities already express preferences implicitly through what content they accept, engage with, and
allow to persist. We show that repeated community acceptance induces measurable structure in representation space,

and that this structure can be operationalized as a preference-aligned signal for language model alignment.

Message
Preferred ()
N

Pairwise preference judgments
consistently favor responses in

high-density regions ferred

Aysueq @3ue3dady
((21x)d 6oy » Z)
92e4ns snsuasuo) Ayunwuwod

Fig. 1. Conceptual Representation of the Community Consensus Surface. The Z-axis represents a normative log-density,
reflecting the implicit filtering of responses by community standards through moderation and collective feedback [11, 32]. High-density
regions correspond to a coherent, low-dimensional manifold of accepted responses in representation space [2, 36]. The separation
between preferred (r*) and non-preferred (r~) responses across this surface reflects an acceptance—preference correspondence,
motivating preference learning and alignment without explicit annotation [13, 41, 44].
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3.1 Conceptualization: Community Acceptance as a Manifold

Community norms are not imposed instantaneously; they emerge gradually through repeated interaction. Over time,
online communities continuously filter participation through moderation, feedback, and collective attention. Responses
that align with shared expectations are more likely to persist, receive engagement, and be incorporated into ongoing
discourse. Responses that violate these expectations are disproportionately ignored, down-ranked, or removed.

This repeated process of selection acts as a form of implicit norm formation and expression. As similar responses are
consistently accepted across comparable contexts, they accumulate and reinforce one another, giving rise to behavioral
and linguistic regularities at the community level. For intuition, consider responses as points scattered across a 3D
landscape, where elevation represents community acceptance density (Figure 1). Accepted responses—those that persist,
receive engagement, or align with community norms—cluster in peaks of high density (high elevation), forming a
coherent acceptance manifold. In contrast, rejected or misaligned responses lie in sparse, low-density regions at lower
elevation, farther from the community’s normative core. This geometric separation mirrors the acceptance—preference
correspondence illustrated in Figure 1, where preferred (r*) and non-preferred (r~) responses occupy distinct regions
of the surface. Prior work shows that such endogenous filtering dynamics produce durable patterns in language use,
interaction style, and participation structure within communities [12, 14, 24].

We formalize this phenomenon geometrically, drawing on representation geometry [2, 39] and density-based
clustering [18], which show that linguistic and semantic structures occupy low-dimensional manifolds in embedding
space. For a community ¢, we define an acceptance manifold M. as the region of representation space occupied by
responses that the community accepts as appropriate or authentic. Note that acceptance here is not a binary property
of individual messages (e.g., receiving upvotes or avoiding removal), but an aggregate notion that emerges over time
from patterns of participation and persistence within the community. Let E(r) denote the embedding of a response r.

We model community acceptance as a density over representations,

p(rle)=p(E@) o),

where higher density indicates stronger conformity with community norms. This view is consistent with distributional
perspectives on language, in which semantic and pragmatic regularities correspond to geometric structure in embedding
space [19, 39]. Here, however, geometry reflects not only semantic similarity, but also normative compatibility with a
specific community.

The gradient of the log-density,

Vi) log p(E(r) | o),

defines a continuous direction of increasing alignment with community norms. Unlike discrete preference labels, this
signal is smooth, shared across responses, and derived directly from observed behavior.

This framing induces an acceptance—preference correspondence assumption: responses that are repeatedly accepted by

a community are more likely to align with that community’s preferences. Formally,
argmax p(r | ¢) o argmaxE[preference(r | c)].
r r

This assumption parallels foundational results in revealed preference theory and implicit feedback learning, where
aggregate behavioral signals—despite being noisy at the individual level—can be used to empirically derive stable

community-level preferences and norms [22, 25, 26, 31]. Here, we treat acceptance behavior as a revealed signal of
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6 Gerard et al.

collective consensus: the norms that emerge from repeated, distributed decisions about what content is permitted,

engaged with, persists within a community.

3.2 Problem Formulation

Let D, = {r;}¥, denote a corpus of responses that have been accepted by a community ¢ through moderation,
engagement, or sustained participation. We embed each response as x; = E(r;) and interpret their distribution in
representation space as an empirical record of the community’s acceptance behavior.

Our goal is to use it to derive an implicit preference signal. Specifically, we view local acceptance density as inducing
a partial ordering over candidate responses: responses that lie in higher-density regions of the acceptance manifold are
more consistent with community norms than those in low-density regions.

In standard alignment pipelines such as RLHF [13] or Direct Preference Optimization (DPO) [44], learning is driven
by explicit pairwise preference annotations. In contrast, we replace this supervision with a density-derived preference

signal. For a given context, candidate responses can be ranked according to their relative acceptance density,

p(E(r) | o),

which serves as a proxy for community preference in the absence of human-labeled comparisons.

We refer to this approach as Density-Guided Response Optimization (DGRO). DGRO uses acceptance density to
construct implicit preferred and dispreferred response pairs, enabling standard preference-based objectives such as
DPO to be applied in annotation-scarce settings. This formulation aligns with prior work showing that geometric and

distributional structure can substitute for direct supervision in low-resource regimes [1, 21].

3.3 Operationalizing Acceptance Density

Acceptance density is a conceptual object defined over representation space. A key design choice is whether to estimate
this density globally across all community content or locally conditioned on context. A global estimate implicitly
assumes that community norms are uniform across topics and intents—a strong assumption that we later show obscures
preference signal. We therefore adopt a local density estimation strategy inspired by neighborhood-based semantic
modeling and local distributional structure [27, 33], while treating global density estimation as a baseline.

Given a query context h (e.g., a conversation history or post topic) with embedding E(h), we define a context-
conditioned reference set

B(h) = kNN(h; {E(h)}1L,).

consisting of the k nearest contexts. Let {x;} jcg(n) denote the embeddings of the corresponding accepted responses.

We estimate acceptance density using a kernel density estimator,

logp(x | h,c) o log 1 Z Ky (x,xj),

B (R JEGAU(JATV B(h)
where K, is an RBF kernel with bandwidth set via the median heuristic. This gives us a context-sensitive estimate:
responses are scored relative to what the community accepts in similar situations, rather than against an aggregated
global pool.
If acceptance density reflects community preference structure, it should both correlate with labeled human preference

behavior in supervised settings and serve as a practical substitute for explicit preference annotations when used to train

Manuscript submitted to ACM



313
314
315
316
317
318
319
320
321
322
323

324

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

356
357
358
359
360
361
362
363
364

Density-Guided Response Optimization: Community-Grounded Alignment via Implicit Acceptance Signals 7

alignment objectives such as DPO or RLHF. We evaluate both implications empirically in Section 5 before deploying

DGRO in annotation-scarce domains.

4 Experimental Setup

Our experiments are structured to answer three progressively stronger questions. First, we validate the manifold
hypothesis: whether community preference signals exhibit local geometric structure in representation space. Next, we
test whether acceptance density can functionally replace explicit human preference labels inside a standard optimization
objective. Finally, we evaluate whether this signal can be used to align language models in real-world communities

where preference annotations are unavailable.

4.1 Validating the Manifold Hypothesis

First, we seek to validate the core premise of our approach: that preference signal exhibits local geometric structure
in representation space. We use the Stanford Human Preferences (SHP) benchmark [20], which provides pairwise
preference judgments across Reddit communities as well as an external quality signal measuring the strength of human

agreement.

Communities and Data. We select five subreddits with clearly distinct moderation regimes and community norms:
changemyview, askculinary, askhistorians, legaladvice, and explainlikeimfive; these communities spanning different
domains, interaction styles, and standards for acceptable responses. These communities differ substantially in how
responses are evaluated, filtered, and endorsed, providing a controlled setting to test whether preference structure is
shared across heterogeneous norms rather than driven by idiosyncrasies of a single community. Additional details
about each community are provided in Appendix Table 4. Each example consists of a conversation history (prompt), a
preferred response and a non-preferred response as determined by community member voting, along with metadata

including the normalized ratio of upvotes between responses, which captures preference strength.

Testing the Manifold Hypothesis. We ask whether responses preferred by a community tend to occupy higher-
density regions of representation space than non-preferred responses, when density is estimated using only unlabeled
data. To test this, we first embed all responses from the training split, treating them as an unlabeled reference pool
that includes both preferred and non-preferred responses. We use a fixed sentence encoder to obtain representations,
enabling density estimation over the resulting embedding space.! Preference information is not used at this stage, and
training and test splits are kept strictly disjoint. For each prompt in the test set, candidate responses are embedded
and ranked according to their acceptance density under the community distribution. We then evaluate whether the
response with higher estimated density corresponds to the community-preferred response.

Evaluation Protocol. For each test pair (h, r, r_), we compute a margin given by the difference in estimated acceptance
density between r, and r_. We report pairwise accuracy, P[margin > 0], as the primary metric. SHP provides the ratio
of upvotes between responses normalized as an independent measure of community agreement strength. If preference
signal is encoded in local geometry, our density-based margins should align with human preferences and improve as

community agreement increases.
Baseline Methods. Our model, which we call acceptance density, estimates density conditioned on the k = 150 nearest
histories in embedding space; performance is robust to k and we report ablations in Appendix D.

'We use the sentence-transformers/all-mpnet-base-v2 encoder (https://huggingface.co/sentence-transformers/all-mpnet-base-v2), a widely
adopted semantic model that provides stable neighborhood structure across domains. Results are robust to alternative encoders; see Appendix B.
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8 Gerard et al.

We compare against the following baselines. (1) Random assigns random margins as a sanity check. (2) k-Nearest
Neighbors (kNN) retrieves the k = 150 most similar training histories and predicts the majority preference label, testing
whether neighborhood selection alone provides signal. (3) Global acceptance density estimates acceptance density using
a fixed random subset (|G| = 1000) of training responses, testing whether density modeling without locality recovers
preference structure. Finally, we report results for the (4) original supervised SHP reward model 2. This model serves
as an upper-bound reference, illustrating how closely density-based methods trained on unlabeled data approximate

preference signals learned from large-scale human annotations.

4.2 Acceptance Density as a Preference Proxy

Building on the validation in the previous section, we next test whether acceptance density can replace human-labeled
comparisons within a standard preference optimization pipeline, and whether doing so induces preference behavior
aligned with community judgments.

To test this, we instantiate a density-based variant of Direct Preference Optimization (DPO) that uses acceptance
density to construct implicit preference supervision. We follow the same procedure for estimating acceptance density
described in the previous section, treating the training split as an unlabeled reference pool and never using ground-truth
preference labels during training. Density-derived rankings are used to form implicit preferred and dispreferred response
pairs, which are then used to train a policy model with the standard DPO objective.

Unless otherwise specified, all main results initialize from a pre-trained Pythia-2.8B language model. This choice
mirrors the experimental setup used in prior DPO work [44], which uses Pythia-2.8B [8] as a primary reference
architecture for preference optimization; we do this for direct comparability and to isolate the effects of the preference
signal rather than architectural differences. Evaluation is performed on a held-out test split.

To assess robustness, we additionally repeat this procedure across multiple model architectures and parameter scales.

These results show consistent trends, and we report deviations from the Pythia-2.8B baseline in Appendix C.

Evaluation protocol. Evaluation is performed against held-out ground-truth human preferences. We assess alignment
using length-normalized preference accuracy, defined as the fraction of held-out SHP pairs for which the model assigns
higher average log-probability per response token to the human-preferred answer. Log-probabilities are computed over
response tokens only, conditioned on the shared prompt, ensuring that differences in response length do not confound
the comparison. This evaluation directly tests whether optimization driven solely by acceptance density induces models
to prefer the same responses that human annotators judge as better, which is the central objective of preference-based
alignment. We report this metric for both supervised DPO (trained on true human preference pairs) and acceptance
density-guided DPO under identical architectures, prompts, and evaluation conditions. This isolates a fundamental
question: whether acceptance density behaves like a preference signal when used as the sole source of supervision inside
a standard alignment objective. Demonstrating competitive performance under this constraint establishes acceptance
density as a viable substitute for explicit preference labels, justifying its use in annotation-scarce domains for alignment

purposes.

4.3 Application to Annotation-Scarce Communities
Following the validation experiments above, we apply density-guided response optimization (DGRO) in real-world

communities where explicit preference annotations are unavailable, and evaluate its effectiveness for aligning language

https://huggingface.co/stanfordnlp/SteamSHP-flan-t5-x1
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https://huggingface.co/stanfordnlp/SteamSHP-flan-t5-xl

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

452

459
460
461
462
463
464
465
466
467

468
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Table 1. Communities and data sources used in DGRO evaluation. Validation communities provide explicit preference supervision,
while application communities lack pairwise labels and rely on behavioral acceptance signals.

Community Platform Scale Acceptance Signal

Q&A Reddit (SHP)  10K-50K pairs  Pairwise human preferences
Eating Disorder Support — Twitter ~43K posts Replies, retweets

Eating Disorder Support ~ Reddit ~9.2M posts Upvotes, comment depth
Eating Disorder Support ~ Forums ~1.6M posts Replies, thread continuation
Conflict Documentation ~ VK ~8.34M posts  Likes, reposts

models in practice. In these settings, acceptance density is used to construct implicit preference supervision. Using
unlabeled community data, we estimate acceptance density as described in Section 4.1 and use it to form preferred and
dispreferred response pairs. These density-derived pairs are then used to train policy models with a standard DPO

objective. No explicit pairwise preference annotations are used at any stage.

Communities and data. We evaluate DGRO in settings where general-purpose models fail to capture domain-specific
norms, and where standard preference annotation methods pose significant ethical risks.

Our primary evaluation focuses on eating disorder support communities across three platforms (Reddit, Twitter, and
specialized forums). These communities exhibit highly sensitive, context-dependent communication norms distinct
from general instruction-following behavior. Prior work indicates that off-the-shelf LMs often generate content that
members find inauthentic or harmful [23, 47, 49]. To address the ethical challenges of working in this domain, our data
curation was conducted in collaboration with clinical domain experts and medical professionals as part of a broader
study on online community formation (with IRB approval). Using expert-verified implicit signals avoids the ethical
pitfalls of explicit annotation, including consent issues and potential re-traumatization.

To validate cross-lingual and political discourse generalization, we extend our evaluation to conflict documentation
communities on VKontakte (VK), a Russian-language platform structurally comparable to Facebook [4]. These commu-
nities focus on the aggregation and discussion of ongoing conflict documentation, exhibiting norms distinct from both
Western platforms and general Russian-language corpora. Current multilingual models, typically trained on broad web
corpora, lack exposure to these specific discourse conventions. Using these data, we test DGRO’s ability to adapt to
distinct sociopolitical dialects where standard models often produce responses that appear foreign to the community’s

authentic communication patterns.

Evaluation protocol. The goal of this evaluation is to assess whether density-guided response optimization produces
outputs that are judged as more appropriate and authentic within communities where explicit preference annotations
are unavailable. As established in earlier sections, this analysis rests on two validated prerequisites: first, that acceptance
density reliably recovers human pairwise preferences when such labels are available (Section 4.1); and second, that
density-guided optimization induces model behavior aligned with those same human judgments on held-out data
(Section 4.2). Having validated both the preference signal and its effect on model behavior, we now evaluate aligned
models in annotation-scarce domains.

Because these domains lack large-scale preference annotations, evaluation must rely on indirect judgments. We
therefore anchor LLM-based evaluation in human expert assessment, first conducting expert evaluation on a stratified
subset of 200 held-out examples (50 per domain), with three domain experts per community. This analysis verifies that
aggregate LLM judgments track expert assessments along the same criteria. Following established practices in alignment
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research [17, 48], we then use LLM-as-judge comparisons along two criteria—relevance (contextual appropriateness to
the prompt and community norms) and authenticity (consistency with the community’s characteristic tone, framing,
and interactional style)—as a scaling mechanism for this previously validated human preference structure, rather than
as an independent source of normative authority. Evaluation is performed in a head-to-head setting, where judges
compare a model-generated response against an actual response drawn from the target community for the same
context, using examples held out from all training stages. We use three frontier language models as judges: GPT-5-nano,
Claude-4.5-Haiku, and Gemini-2.5-Flash.> Each model is queried three times with randomized response order to control

for positional bias, yielding nine judgments per comparison.

Baselines and model variants. We compare DGRO against three baselines: (1) an off-the-shelf instruction-tuned model
(Base), (2) supervised fine-tuning on community text (SFT), and (3) in-context learning with community exemplars
(ICL). To isolate density-guided optimization from supervised pre-training effects, we conduct ablations controlling for
training compute.

All comparisons use identical architectures, decoding parameters, and context construction. As explored in prior
sections and further examined in Appendix C, variation across model architectures and scales appears limited for
preference alignment under density-guided DPO. As such, we fix the base model to Pythia-2.8B in this section in order
to focus on the behavioral and normative effects of the alignment procedure itself, rather than introducing additional

variation from differences in model capacity or representation.
5 Results

Table 2. Pairwise accuracy across communities for unsupervised and supervised methods. Accuracy is reported as mean + bootstrap
half-width, § = %(hi — lo), computed independently per subreddit. Supervised Model (RM) denotes the supervised reward model
(stanfordnlp/SteamSHP-flan-t5-xI), trained with human preference annotations and included as a reference upper bound.

Method r/askhr r/askbaking r/askculinary r/askhistorians r/changemyview r/asksocialsci r/asksci fiction
Random 0.50 +0.00 0.50 + 0.00 0.50 £ 0.00 0.50 £ 0.00 0.50 £ 0.00 0.50 +0.00 0.50 + 0.00
kNN 0.55+0.03 0.49 £ 0.01 0.50 £0.02 0.58 £0.03 0.49 £0.03 0.50 £0.03 0.52 +0.04
Global Acceptance Density 0.68 +0.01 0.53 +£0.03 0.51+£0.03 0.60 £ 0.09 0.57 £0.04 0.59 +0.03 0.49 +0.03
Local Acceptance Density 0.71+0.03 0.60 +0.02 0.57 +£0.04 0.72 £ 0.03 0.61 +£0.03 0.64 £ 0.01 0.65 +0.02
Supervised Model (RM) 0.75 +0.03 0.65 +0.03 0.72 £0.01 0.74 £0.02 0.68 £ 0.02 0.80 £ 0.03 0.72 £0.02

5.1 Validating the Manifold Hypothesis

We begin by evaluating the central empirical claim of this work: that preference signal is encoded in the local geometry
of representation space (acceptance density). If this hypothesis holds, preserving local manifold structure should recover

human preferences, while methods that destroy or ignore locality should fail.

Preference signal is recovered by geometry-preserving density. We find that preference signals, typically requiring
explicit supervision, can be recovered through the geometry-preserving properties of local density. As shown in Table 2
and Figure 4, local acceptance density consistently identifies community-preferred responses across all evaluated
subreddits, achieving 58-72% pairwise accuracy and substantially outperforming all unsupervised baselines.

Our results suggest that recovering this structure requires a balance between locality and distributional modeling. At

one extreme, global acceptance density performs near chance; by aggregating across heterogeneous contexts, it likely

3GPT-5-nano (https://platform.openai.com/docs/models), Claude-4.5-Haiku (https://www.anthropic.com/claude), and Gemini-2.5-Flash (https://ai.google.
dev/gemini-api/docs/models)
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averages away the nuanced structures that encode specific preferences. At the other extreme, simple kNN retrieval
gives only modest gains above random chance, indicating that merely identifying nearby examples is insufficient: one
must model the relative distribution (i.e. the “shape”) of those examples.

Notably, local density approaches the performance of supervised reward models despite having no access to explicit
preference labels. We find that the performance gap between our unsupervised method and supervised models narrows
significantly in instances of high human agreement (Figure 4). This suggests that a substantial portion of the signal
leveraged by traditional reward models is not “new” information provided by labels, but is instead already latent within
the local manifold geometry of community-accepted discourse.

Additionally, we find a clear positive relationship between human agreement strength and preference recovery by
local acceptance density. When aggregating across communities, accuracy exhibits a moderate, statistically robust
correlation with agreement strength (ps = 0.48, p < 10™%), indicating that density-guided alignment performs best in
regions where community preferences are most clearly differentiated.

This trend is even more pronounced within several individual communities. Subreddits such as r/asksciencefiction
(ps = 0.90, p < 0.001), r/askhr (ps = 0.81, p = 0.015), and r/askbaking and r/askculinary (both ps = 0.75, p < 0.05)
exhibit strong, statistically significant correlations, suggesting that local acceptance density closely tracks human
consensus when norms are well-defined. In contrast, communities with smaller evaluation sets and sparser agree-
ment bins (e.g., r/askhistorians, r/asksocialscience) show weaker correlations, consistent with limited statistical
power (rather than a deviation from the overall monotonic trend). Figure 5 and Table 8 (Appendix) provide the full
per-community breakdown.

This pattern provides direct empirical support for the acceptance—preference correspondence posited in Section 3.
When community agreement is weak, acceptable responses span broader and less differentiated regions of representation
space, limiting the recoverability of preference signal. As consensus strengthens, accepted responses collapse into
tighter, more coherent regions of the manifold, making relative density an increasingly reliable indicator of preference.
Accordingly, accuracy improves systematically with human agreement strength, with local acceptance density perform-
ing best precisely when community preference is most clearly expressed. This dependence on agreement strength is
inconsistent with a fixed estimator bias: if density merely favored certain responses irrespective of context, accuracy
would not vary predictably with consensus. Instead, the observed relationship indicates that local geometry captures

meaningful structure in community judgment rather than an artifact of density estimation.

5.2 Acceptance Density as a Preference Proxy

Having established that acceptance density behaves like a preference signal when preference is observable, we now
evaluate a stronger claim: whether this signal can functionally approximate or replace explicit human preference labels

inside a standard alignment objective.

DGRO recovers supervised preference structure. As shown in Figure 2, constructing preference pairs from relative
position on the acceptance manifold is sufficient to induce preference behavior aligned with community judgments.
Across all evaluated communities, models trained using acceptance density-derived pseudo-pairs recover a substantial
fraction of the accuracy achieved by fully supervised DPO, despite having no access to human-labeled comparisons
during training.

These results indicate that acceptance density functions as a usable preference signal when integrated into a standard

alignment pipeline, inducing models to prefer responses that align with community judgments. Combined with the
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Fig. 2. Relative accuracy of DRGO-aligned models expressed as a percentage of baseline DPO performance, computed as 100 X
(DRGO/baseline), where 100% denotes parity with the baseline. Error bars denote +1 standard error estimated via bootstrap
resampling (n=500), with uncertainty propagated using a first-order delta method.

validation results in Section 4.1, this supports the use of acceptance density as a practical substitute for explicit preference

supervision.

5.3 Application to Annotation-Scarce Communities.

Having shown that acceptance density recovers human preference structure and can substitute for labeled comparisons
in controlled settings, we next examine its utility in real-world communities where explicit preference supervision
is completely unavailable. In these domains, alignment must rely on naturally occurring acceptance signals rather
than curated annotations, making them a direct test of whether density-guided preference learning provides practical
advantages over standard adaptation methods. Before comparing alignment methods, we verify that LLM-based
judgments reflect human preference in these domains. On a stratified subset of 200 held-out examples, aggregated
LLM-judge rankings correlate strongly with human expert preferences (explored further in Appendix H), supporting

their use for large-scale evaluation.

DGRO consistently outperforms baselines. Illustrated in Table 3, across all domains, DGRO-based alignment
achieves consistent gains over baselines despite using the same underlying training data. For example, on ED-Reddit,
DGRO wins 58.8% of head-to-head comparisons against SFT (p < 0.001). Similar patterns emerge across other contexts,
where DGRO maintains a significant advantage over SFT in direct comparisons.

The quantitative advantage of DGRO over baselines is reflected in qualitative differences in response authenticity.
Table 10 presents representative examples from both ED-Reddit and VK Conflict discourse, comparing model outputs
against real community responses for the same context. Across domains, the Base and ICL baselines frequently default
to generic, non-situated language that lacks the tone, specificity, or interactional norms characteristic of the target
communities. Supervised fine-tuning (SFT) improves topical relevance but often exhibits repetitive phrasing and diffuse
affect, suggesting partial adaptation to surface content without internalizing community-specific modes of expression.
In contrast, DGRO outputs more closely resemble authentic community participation, showing locally appropriate
framing, specificity, and rhetorical structure.

These results demonstrate that density-guided optimization captures preference structure beyond what supervised
fine-tuning alone recovers. While SFT adapts models to community vocabulary and style, DGRO’s manifold-based
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Table 3. LLM-as-judge head-to-head comparison of DGRO against baseline alignment approaches across annotation-scarce com-
munities. Judges compare paired model outputs for the same prompt, using real community responses as contextual grounding for
relevance and authenticity. Win rates indicate the percentage of comparisons in which DGRO is preferred (mean + 95% Cl).

Community DGRO vsBase DGROvsICL DGRO vs SFT

ED-Reddit 75.4+2.9% 65.8 £3.1% 53.8+3.1%
ED-Forum 72.2 +£3.2% 64.1 £4.4% 57.6 £3.3%
ED-Twitter 76.1+3.0% 66.3+4.1% 56.9 £ 2.6%
VK State 80.7 £3.1% 59.9 £3.2% 55.3+£2.0%

objective appears to encode finer-grained distinctions about what makes responses sound authentic within specific

contexts.

6 Analysis

6.1 Manifold Structure and Preference Signal

Preference signal is encoded in local manifold structure. Across communities, acceptance density corresponds
reliably with human preference when estimated locally in representation space. Conditioning density on nearby contexts
preserves preference structure that is obscured by global aggregation, which collapses heterogeneous situations into
a single distribution. This dependence on locality is likely not incidental. Preference signal degrades when density
is estimated over neighborhoods that are either too broad—approaching global behavior—or too narrow to provide
stable estimation. The resulting pattern indicates that community preferences are neither uniform nor purely instance-

specific, but organized at an intermediate, context-dependent scale.

Acceptance density is data-efficient. As shown in Table 7, estimation of community preference via acceptance density
approaches peak performance with relatively little training data, with the required amount varying by community.
Across all communities, the normalized area under the saturation curve (AUSC) exceeds 0.91, indicating that preference

structure can be recovered in a sample-efficient manner.

6.2 Failure Modes and Limitations

While DGRO provides a useful preference signal in many settings, its effectiveness depends on the availability of
meaningful acceptance structure in representation space. When this structure is weak or absent, the density-derived

signal can become unreliable.

Uninformative density in sparse manifold regions. DGRO relies on acceptance density to construct pseudo-
preference pairs during training. When candidate responses lie far from the acceptance manifold, local density estimates
become noisy and provide little discriminative signal. In such cases, pseudo-pairs may reflect superficial semantic

proximity rather than contextual appropriateness. We explore an example case in Appendix K.

Amplification of community biases. By design, DGRO reproduces patterns present in community acceptance data,
including harmful norms or misinformation. In polarized or toxic communities, the resulting preference signal reflects
those same biases. Because DGRO derives preference structure empirically from observed acceptance behavior, it does
not impose external normative constraints during training. Thus, norm correction must occur outside the preference
signal itself, for example through data filtering or post-hoc safety interventions. Future work could explore hybrid

approaches combining density-guided learning with external normative constraints
Manuscript submitted to ACM
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DGRO is not suitable as a general-purpose or platform-wide alignment mechanism. Because acceptance density
reflects existing participation dynamics and power asymmetries, applying DGRO at scale risks entrenching dominant
norms, amplifying coordinated manipulation, and obscuring contestation. Without explicit governance, community
consent, and mechanisms for redress, density-guided optimization should be treated as an analytical instrument rather
than a deployment-ready alignment strategy.

These limitations suggest clear boundaries: DGRO is best suited to stable communities with established norms,
sufficient scale for density estimation, and values aligned with deployment objectives. When communities are small,

polarized, rapidly evolving, or exhibit harmful norms, explicit human supervision remains necessary.

7 Discussion

Language models increasingly operate in settings where communicative norms are community-specific and diverge
from generic instruction-following behavior. Our results suggest that these norms give rise to stable, community-level
structure in representation space, which can be captured through acceptance density. This structure reflects not only
semantic similarity, but alignment with what a community considers appropriate.

DGRO operationalizes this observation by using acceptance density as a source of preference supervision. Rather
than relying on elicited pairwise judgments, the method constructs preference signal directly from unlabeled community
behavior. Across the settings we study, this signal is sufficient to guide alignment in domains where explicit preference

annotations are impractical, costly, or ethically constrained.

7.1 Ethical Considerations

While DGRO uses only publicly observable signals, the method raises ethical concerns warranting careful consideration
before deployment. The question of who speaks for a community becomes important. Acceptance patterns reflect active
participants, moderators, and platform affordances, which may not represent full community values. Marginalized
voices, silent lurkers, or departed members do not contribute to the signal, yet deployment affects them. DGRO-based
alignment uses revealed preferences of those who remain, potentially encoding values of whoever holds power rather
than the community as a whole.

Additionally, harm amplification poses a serious risk. Because DGRO derives preference structure directly from
observed community behavior, it reproduces existing norms, including harmful or exclusionary ones. Unlike supervised
alignment, it does not introduce an external mechanism for norm correction during training; mitigation must therefore
rely on data filtering or post-hoc constraints. Vulnerability to manipulation creates additional concerns. Adversaries
who can influence acceptance through coordinated engagement or vote manipulation can poison the learned preference
structure. This is particularly concerning in communities with weak integrity controls or concentrated power.

DGRO deployment requires careful ethical assessment beyond technical validation. At minimum: transparency about
community data use, mechanisms for feedback and opt-out where feasible, ongoing monitoring for drift, and human
oversight in high-stakes domains. For sensitive communities like mental health forums, stakeholder consultation should
precede deployment. The broader question is whether making alignment more accessible ultimately serves community
interests. Reducing barriers could empower under-resourced communities to shape Al behavior appropriately, or
empower exploitation of community data and amplification of harmful norms. These questions require ongoing

dialogue between researchers, communities, and stakeholders about appropriate governance.
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8 Conclusion

We introduce density-guided response optimization (DGRO), a method for aligning language models to community
norms without relying on explicit preference annotations. By modeling the distribution of responses that communities
consistently accept, DGRO infers implicit preference structure from local density in representation space.

Across validation experiments, models aligned using DGRO outperform baseline approaches despite having no access
to human-labeled preference comparisons during training, relying only on naturally occurring community behavior.
These results indicate that acceptance signals encode sufficient structure to support preference-based alignment.

Our findings suggest that community acceptance provides a practical, annotation-free source of alignment signal,

enabling model adaptation in settings where explicit preference elicitation is infeasible, costly, or ethically constrained.
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9 Endmatter Sections
9.1 Generative Al Usage Statement

The authors did not use generative Al tools for this manuscript. The authors wrote and prepared all of the content for

this manuscript.

9.2 Ethical Considerations Statement

This work uses publicly available data drawn from online communities and does not involve direct interaction with
human subjects, intervention in deployed systems, or the collection of private or non-public information. All data were
handled in accordance with applicable platform terms and established norms for CSS research. We did not attempt to
identify individuals, and our analysis was conducted at an aggregate level focused on community-wide patterns.

The primary ethical risks associated with this work come from the potential downstream use of DGRO to model and
reproduce community norms. These risks are discussed in detail in Section 7.1. In that section and here, we emphasize
that acceptance-based signals reflect the behavior of active and empowered participants rather than comprehensive or
consensual community values. Additionally, we note that DGRO should not be treated as a normative authority or
deployed without appropriate oversight.

We do not claim that DGRO mitigates harmful norms or resolves questions of legitimacy. Instead, we treat it as
a descriptive method whose responsible use depends on transparency, community governance, and domain-specific
safeguards. Potential adverse impacts and limitations are analyzed in Section 7.1, and we outline conditions under

which deployment would be inappropriate or ethically unsafe.
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A Full Dataset Info - Reddit

B Embeddings

Table 4. Dataset sizes for Reddit communities used in evaluation.

Subreddit Train Validation Test  Total
r/askhr 8,295 641 395 9,331
r/askbaking 44,007 2,096 1,544 47,647
r/askculinary 45,710 2,094 2,563 50,367
r/askhistorians 3,264 113 164 3,541
r/changemyview 38,173 1,637 1,836 41,646
r/asksocialscience 2,706 147 188 3,041
r/asksciencefiction 29,382 1,576 1,987 32,945

Table 5. Effect of embedding model choice on local acceptance density performance. Accuracy is reported as mean + bootstrap
half-width, 6 = %(hi — lo), computed independently per subreddit. Results are shown for the local density method using different
sentence embedding models to construct the acceptance manifold.

Embedding Model r/askhr r/askbaking r/askculinary r/askhistorians r/changemyview r/asksocialscience r/asksciencefiction
MPNet (default) 0.71 +£0.03 0.60 = 0.02 0.57 +0.04 0.72 +0.03 0.61 £0.03 0.64 +0.01 0.65 +0.02
all-MiniLM-L6-v2 0.70 £ 0.03 0.59 £0.02 0.56 = 0.04 0.70 £ 0.04 0.60 = 0.03 0.63 = 0.02 0.64 £0.02
E5-large-v2 0.72 £ 0.03 0.61 +0.02 0.58 = 0.04 0.73 £0.03 0.62 £ 0.03 0.65 = 0.02 0.66 £ 0.02

C Model Robustness

Table 6. Deviation in length-normalized preference accuracy on held-out SHP human preference pairs relative to the Pythia-2.8B
baseline. Reported values indicate mean difference (in percentage points) + bootstrap standard error, computed under identical

prompts, objectives, and evaluation conditions. Deviations are small across base models, indicating that acceptance density-guided
DPO induces consistent preference alignment behavior largely independent of model architecture, which is consistent with prior

work [44].

Base Model

Preference Accuracy A (pp)

google/gemma-2b [46]
google/gemma-7b [46]
meta-llama/Llama-3.2-3B [16]
meta-llama/Llama-3.1-8B [16]

-0.4+04
+0.3+0.5
+0.1+0.4
+0.6 + 0.6
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F Data Efficiency

Table 7. Data efficiency of the local method across communities. We report the normalized area under the saturation curve (AUSC)
and the number of training pairs required to reach 95% of peak accuracy, both computed using accuracy expressed as a percentage of
each method’s peak performance. Higher AUSC and lower pair counts indicate faster saturation under limited supervision.

Subreddit AUSC Pairs to 95% peak
r/askhr 0.971 50
r/askbaking 0.985 150
r/askculinary 0.981 250
r/askhistorians 0.920 1450
r/changemyview 0.978 250
r/asksocialscience 0.950 250
r/asksciencefiction  0.961 850
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G Correlation with Human Agreement

Table 8. Per-subreddit correlations between human agreement strength and local accuracy. For each subreddit, we bin comment
pairs by agreement strength (median score_ratio per bin) and compute local pairwise accuracy within each bin. We then assess the
monotonic relationship between bin-level agreement strength and bin-level accuracy using Spearman’s p. Five of seven subreddits
show significant positive correlations (p < 0.05), with particularly strong effects in r/asksciencefiction (ps = 0.90) and r/askhr

(ps = 0.81). Asterisks denote significance levels: *p < 0.05, ***p < 0.001.

Subreddit ps  p-value
r/askhr 0.81 0.015*
r/askbaking 0.75  0.013*
r/askculinary 0.75  0.020"
r/askhistorians 0.45 0.197
r/changemyview 0.60 0.067
r/asksocialscience  0.26 0.500
r/asksciencefiction 0.90 <0.001***

Pooled association between agreement strength and local accuracy

0.8 |~

Local pairwise accuracy

ps =048 (p < 107%)
7=034(p <107%)

0 5 10 15 20

25 30 35

Human agreement strength (score_ratio median per bin)

Fig. 5. Higher human agreement correlates with higher local accuracy. Each point is an agreement-strength bin from a
subreddit. The moderately strong positive correlation (ps = 0.48, p < 10™%) suggests that judge accuracy improves in regions where
community preferences are more clearly differentiated. The fitted line is shown for visualization only; significance is assessed with

rank correlations.
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H Reliability of Human and LLM-Based Evaluation

To understand the reliability of LLM-based evaluation in annotation-scarce domains, we conducted human expert
evaluation on a stratified subset of 200 held-out examples (50 per domain), with three domain experts per community.
Experts were evaluated under the same head-to-head comparison setup used for LLM-based evaluation in Section 4.3:
for each example, experts compared a model-generated response against an actual response drawn from the target
community for the same context. Experts judged responses along the criteria of relevance (contextual appropriateness
to the prompt and community norms) and authenticity (consistency with the community’s characteristic tone, framing,
and interactional style), and were asked to make comparative judgments. All examples were held out from training at
every stage.

We compute inter-annotator agreement using Krippendorft’s a with an ordinal distance function. Krippendorff’s
a is appropriate for this setting because it supports ordered categories, multiple annotators, and chance correction.
Then, to evaluate whether LLM-based evaluation reproduces expert judgment structure, we compute Spearman rank
correlation between aggregate expert rankings and aggregate LLM rankings on the same examples. We also treat
the expert majority decision (2-of-3 agreement) as a reference label and measure LLM agreement with this majority

outcome, effectively treating the LLM ensemble as an additional annotator.

Table 9. Reliability of human expert and LLM-based evaluation on a stratified subset of 200 examples (50 per domain). Inter-annotator
agreement is measured using Krippendorff’s a. Expert-LLM alignment is measured using Spearman rank correlation (p). LLM
agreement with expert majority indicates the fraction of cases in which the aggregate LLM judgment matches the expert majority
ranking.

Community ExpertIAA («) Expert-LLM (p) LLM vs Expert Majority (%)

ED-Reddit 0.46 0.50 77.9
ED-Forum 0.42 0.48 74.6
ED-Twitter 0.44 0.52 79.1
VK State 0.51 0.55 82.0
Aggregate 0.46 0.51 78.4

Across domains, expert inter-annotator agreement is moderate, reflecting the inherently holistic and context-
dependent nature of judgments about relevance and authenticity. Expert-LLM rank correlations are comparable
in magnitude to expert—expert agreement, and aggregate LLM judgments match the expert majority decision in
approximately 78% of cases. This indicates LLM-based evaluation reproduces the same underlying preference structure
expressed by human experts. Practically speaking, aggregated LLM judgments are no less reliable than an additional
human annotator operating under the same task constraints. With this in mind, LLM-as-judge is used in this work

solely as a scalable extension of expert-grounded evaluation given its validation against human judgment.
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Qualitative Examples

Table 10. Qualitative examples comparing model variants against real community responses.

25

Community

Context

Real

Base / ICL

SFT

DGRO

Eating Disor-
der Support -
Reddit

“Please stop me. I am
about to binge for the first
time since the beginning
of the year”

“Take a deep breath.
You've done a great job
so far. One binge isn’t
the end. Pause, breathe,
and ask yourself what
you need right now.”

“I'm sorry you're feel-
ing this way. Every-
thing will be okay. Try
to stay strong and re-
member you are not
alone”

“'m so sorry. I can’t
help you. I'm sorry
you're feeling this way
too. 'm sorry you feel
like that. You sound
like a lot of people
I know are suffering
from a lot of things. I
know I'm not alone, so
I'm sorry you [...]”

“I'm in recovery too, and
moments like this are
really hard. You've al-
ready made real progress.
Maybe pause, breathe,
and check in with what
you actually need right
now. I'm proud of you for
reaching out.”

Conflict Doc-
umentation

News post about sanc-
tions and “financial nu-
clear war”

“Will sanctions forbid
treatment for our sick
children? Medical equip-
ment? Who is responsi-
ble for this madness?”

“Sanctions are a com-
plex political tool. The
situation is very com-
plicated”

“The people have suf-
fered for many years
and now face new chal-
lenges due to interna-
tional pressure.”

“And why didn’t Putin,
the oligarchs, or the me-
dia talk about this be-
fore? Now everyone pays
the price. The country is
run by fools, and ordi-
nary people are left to
suffer”
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1300 J  Qualitative Visualization of Response Manifolds
1302

1305 Figure 6 shows an illustrative visualization of how model-generated responses are positioned relative to real community

1304  responses in representation space for the ED-Forum community. We embed (a random subset of 1,000 responses for

1305 readability purposes) both real and generated responses using a shared sentence embedding model and project them

1306 . . . . e
" into two dimensions using UMAP for visualization.
1307

108 Across panels, real community responses (gray) form a coherent but heterogeneous distribution reflecting the range

1309 of acceptable discourse within the community. Base model outputs exhibit a visibly shifted distribution, with many

1310 responses occupying regions that only partially overlap with the empirical response manifold. Supervised fine-tuning

o (SFT) reduces this displacement, producing responses that more frequently lie near real examples but still display
1312

115 Substantial dispersion into lower-density regions. Finally, DGRO outputs appear more consistently interwoven with the

1314 real response distribution, occupying similar regions of the embedding space without collapsing into a narrow mode.

1315 Note that this visualization is provided for qualitative intuition only.

1316

1317 Base vs Real SFT vs Real DGRO vs Real
1318 e ) o o soo ‘

1319

1320

1321

1322

1323

1324 . :

1325

1326

1327

1328

1320 Fig. 6. UMARP visualization of response embeddings for the ED-Forum community. Real community responses are shown in gray,
1530 with model outputs overlaid in color using a shared embedding and projection. We display a random subset of 1,000 responses from
L1 the ED-Forum dataset for visualization purposes only. Note that these plots are just an illustrative example; they are not intended to
. support quantitative or comparative claims.
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K Uninformative Pseudo-Pairs

Density-guided alignment constructs implicit preference supervision by ranking pseudo-candidate responses relative
to a community acceptance manifold. This assumes that at least one candidate lies sufficiently close to regions of
representation space populated by historically accepted community responses. When this assumption is violated, the
resulting pseudo-pairs can become uninformative.

Table 11 shows a representative failure case from an eating disorder support community. In this example, a real
community response is paired with two pseudo-candidate responses generated during training. One pseudo-candidate
is ranked higher than the other by acceptance density, despite both being contextually inappropriate and misaligned
with the prompt.

This failure arises because all candidate responses fall outside the local acceptance manifold. In this, neighborhood
structure is weak or absent, and acceptance density fails to provide reliable discrimination. Density estimates may

therefore reflect noise, leading to arbitrary or misleading rankings among pseudo-candidates.

Table 11. Representative failure case from an eating disorder support community. When both pseudo-candidates lie outside the local
acceptance manifold, density-based ranking may prefer one misaligned response over another, even when a real community response
is clearly preferable.

Context: Mike, I have talked to compounding pharmacies who assert that they can sell it because there is a shortage...and lots of
people are getting their semaglutide this way from reputable compounding pharmacies. I am not saying it’s legal, but not necessarily
unsafe.

Real (Community Response): You can’t guarantee the safety and efficacy of compounded semaglutide. We have no idea
where the raw ingredients are being sourced. Overall it’s not a risk I'm willing to take as someone who took the Hippocratic
Oath.

Pseudo-Candidate (Lower Ranked): I am a pharmacist and I have been told that there is a shortage of semaglutide from a
reputable compounding pharmacy. Can you tell me if that’s true?

Pseudo-Candidate (Higher Ranked): Keto is a low-carb diet in which the body uses fat as fuel instead of carbohydrates, with
the goal of improving health.

This illustrates a structural limitation of acceptance-based preference inference: relative density can induce an
ordering among pseudo-candidates even when none are meaningfully aligned with the community acceptance manifold.
In such cases, the resulting pseudo-pair supervision is effectively arbitrary and should not be interpreted as reflecting

genuine community preference.
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