

1 **Density-Guided Response Optimization: Community-Grounded Alignment via**
2 **Implicit Acceptance Signals**
3

4 PATRICK GERARD, Information Sciences Institute, University of Southern California, USA
5

6 SVITLANA VOLKOVA, Aptima Inc., USA
7

8 Language models deployed in online communities must adapt to norms that vary across social, cultural, and domain-specific contexts.
9 Prior alignment approaches rely on explicit preference supervision or predefined principles, which are effective for well-resourced
10 settings but exclude most online communities—particularly those without institutional backing, annotation infrastructure, or organized
11 around sensitive topics—where preference elicitation is costly, ethically fraught, or culturally misaligned.
12

13 We observe that communities already express preferences implicitly through what content they accept, engage with, and allow to
14 persist. We show that this acceptance behavior induces measurable geometric structure in representation space: accepted responses
15 occupy coherent, high-density regions that reflect community-specific norms, while rejected content falls in sparser or misaligned
16 areas. We operationalize this structure as an implicit preference signal for alignment and introduce *density-guided response optimization*
17 (DGRO), a method that aligns language models to community norms without requiring explicit preference labels.
18

19 Using labeled preference data, we demonstrate that local density recovers pairwise community judgments, indicating that geometric
20 structure encodes meaningful preference signal. We then apply DGRO in annotation-scarce settings across diverse communities
21 spanning platform, topic, and language. DGRO-aligned models consistently produce responses preferred by human annotators, domain
22 experts, and model-based judges over supervised and prompt-based baselines. We position DGRO as a practical alignment alternative
23 for communities where explicit preference supervision is unavailable or misaligned with situated practices, and discuss the implications
24 and risks of learning from emergent acceptance behavior.
25

26 CCS Concepts: • Computing methodologies → Natural language generation; Learning from implicit feedback; • Human-centered
27 computing → Social content sharing.
28

29 Additional Key Words and Phrases: language model alignment, community norms, implicit preferences, density estimation, computational
30 social science, online communities, preference learning

31 **ACM Reference Format:**

32 Patrick Gerard and Svitlana Volkova. 2026. Density-Guided Response Optimization: Community-Grounded Alignment via Implicit
33 Acceptance Signals. 1, 1 (January 2026), 27 pages. <https://doi.org/10.1145/nnnnnnnn.nnnnnnn>
34

35 **1 Introduction**

36 Language models increasingly interact with online communities whose norms, values, and communicative conventions
37 vary widely across social, cultural, and domain-specific contexts. What counts as an appropriate response depends not
38 only on topic, but on situated expectations around tone, evidence, empathy, authority, and care. A question about weight
39 loss, for example, calls for fundamentally different responses in a medical advice forum, a peer support community, or an
40

41 Authors' Contact Information: Patrick Gerard, pgerard@isi.edu, Information Sciences Institute, University of Southern California, Marina Del Rey,
42 California, USA; Svitlana Volkova, Aptima Inc., Dayton, Ohio, USA, svolkova@aptima.com.
43

44 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
45 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
46 of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
47 servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
48

49 © 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
50

51 Manuscript submitted to ACM
52

53 Manuscript submitted to ACM

53 academic discussion space—not because the underlying facts differ, but because the social meanings and potential harms
 54 of speech differ across contexts. Capturing these distinctions is essential not only for safe and effective deployment of
 55 language models, but also for broader questions of algorithmic governance: who defines acceptable behavior, whose
 56 values are encoded, and how those values are operationalized in deployed systems.
 57

58 Existing approaches to language model alignment have largely addressed these questions through explicit preference
 59 supervision. Reinforcement Learning from Human Feedback (RLHF) and related methods rely on annotated preference
 60 data to guide model behavior [13, 41], while Direct Preference Optimization (DPO) simplifies optimization but retains
 61 dependence on labeled comparisons [44]. Constitutional AI further reduces human annotation by introducing principle-
 62 based critiques [3]. While effective in settings where preferences can be clearly articulated and externally specified, these
 63 approaches presuppose that normative criteria are stable, consensual, and ethically straightforward to elicit. In practice,
 64 however, many online communities—particularly marginalized, informal, or sensitive ones—lack the institutional
 65 capacity, shared language, or ethical conditions required for explicit preference annotation. In such settings, asking
 66 external annotators to define “appropriate” behavior risks misrepresentation, cultural mismatch, or harm.
 67

68 At the same time, community norms are not unexpressed. Online communities continuously enact and negotiate
 69 standards of appropriateness through moderation, participation, and collective attention. Content that aligns with
 70 community expectations is more likely to persist, receive engagement, and become part of ongoing discourse, while
 71 misaligned content is ignored, down-ranked, or removed. Importantly, these acceptance patterns are shaped not only
 72 by individual preferences, but also by power, platform affordances, and governance structures within the community.
 73 As such, behavioral acceptance should not be treated as normative endorsement or consent. Rather, it constitutes a
 74 descriptive signal of how norms are operationalized in practice, reflecting the values of those who are most able or
 75 willing to participate.
 76

77 Building on prior work on implicit behavioral signals in recommender systems and information retrieval [26, 30],
 78 we study whether these naturally occurring acceptance patterns give rise to recoverable structure in representation
 79 space. We observe that responses accepted by a community are not randomly distributed; instead, they tend to cluster
 80 in coherent, high-density regions of embedding space, which we refer to as a community’s *acceptance manifold*. This
 81 structure captures what a community treats as permissible or contextually normal, as enacted through collective
 82 behavior rather than prescribed by external rules. We emphasize that this manifold reflects descriptive regularities in
 83 community practice, not an ethical claim about which norms ought to be learned or deployed.
 84

85 We operationalize this observation through **Density-Guided Response Optimization (DGRO)**, a method that uses
 86 local density in a community’s embedding space as an implicit preference signal for alignment. DGRO does not assume
 87 that community norms are universally desirable or stable; instead, it provides a mechanism for studying and modeling
 88 how norms manifest in behavior when explicit preference supervision is unavailable or inappropriate. We first validate
 89 the underlying manifold hypothesis on labeled preference data, showing that local density correlates monotonically
 90 with observed human judgments. We then demonstrate that this signal can substitute for explicit preference annotations
 91 within standard preference optimization objectives. Finally, we apply DGRO in annotation-scarce settings across diverse
 92 communities, including eating disorder support spaces and Russian-language conflict documentation forums, and
 93 evaluate whether aligned models produce responses judged as more contextually appropriate and authentic.
 94

95 This work makes three contributions. First, we provide empirical evidence that community acceptance behavior
 96 induces structured, locally coherent geometry in representation space that encodes recoverable preference signal.
 97 Second, we introduce DGRO as a practical, annotation-free mechanism for leveraging this structure in preference-based
 98 alignment. Third, we analyze the ethical implications and limitations of learning from acceptance behavior, including
 99

105 risks of bias amplification, exclusion, and manipulation, and situate DGRO as a descriptive alignment tool whose
106 deployment requires careful governance and oversight.
107

110 2 Related Work

111 **Alignment from Explicit Preferences** Most modern alignment methods assume access to explicit human preference
112 supervision. Reinforcement Learning from Human Feedback (RLHF) learns a reward model from annotated pairwise
113 comparisons and optimizes a policy via reinforcement learning [13, 41]. While effective, this paradigm requires large
114 volumes of carefully curated preference data and a multi-stage training pipeline. Direct Preference Optimization (DPO)
115 simplifies optimization by removing the reward model and reinforcement learning stage, but still fundamentally relies
116 on explicit preference labels [44]. Constitutional AI further reduces human annotation by substituting AI-generated
117 critiques guided by predefined principles [3], yet this shifts the burden to principle specification and presumes that
118 normative criteria can be articulated a priori. Across these approaches, alignment is framed as supervised learning from
119 observable preferences, limiting applicability in settings where preferences are implicit, emergent, or difficult to elicit.
120

121 **Community Norms and Domain-Specific NLP** A growing body of NLP research emphasizes the importance of
122 cultural, social, and community-specific norms, particularly in low-resource or marginalized contexts [9, 37]. Domain
123 adaptation and specialization techniques such as BioBERT and LegalBERT demonstrate the value of tailoring models
124 to specific domains, but typically require substantial labeled data [6, 10, 34]. Ethical NLP work further argues for
125 embedding social values and community perspectives into model design [7, 28, 35], yet little work has explored how
126 such norms can be learned operationally from naturally occurring community behavior. Our approach contributes
127 a concrete mechanism for grounding alignment in community norms by inferring them directly from patterns of
128 acceptance, without requiring explicit annotation or predefined value schemas.
129

130 Beyond linguistic variation, work in social computing and HCI highlights that community norms are not merely
131 emergent patterns of language use, but are actively shaped through moderation practices, governance structures,
132 and participation asymmetries [29, 38, 40]. These dynamics raise questions of legitimacy and representation: whose
133 behavior contributes to observable norms, and whose voices are systematically excluded. While prior NLP work has
134 emphasized the importance of respecting community norms, relatively little research has explored how such norms
135 can be operationally inferred from naturally occurring community behavior without relying on explicit annotation or
136 predefined value schemas.
137

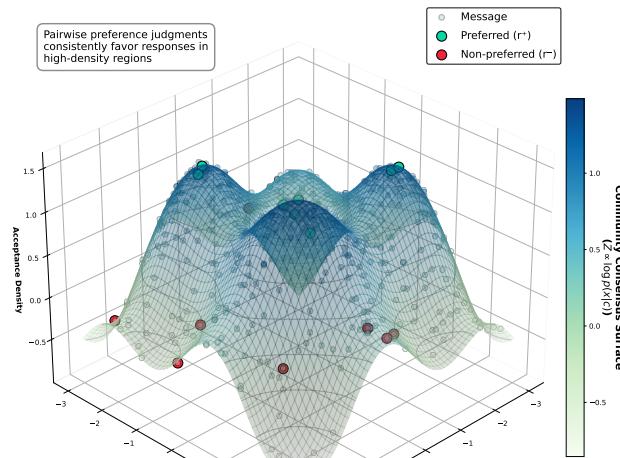
138 **Implicit Behavioral Signals and (the Limits of) Revealed Preference** A large body of work has explored learning
139 from implicit behavioral signals, such as clicks, dwell time, and interaction patterns, particularly in recommender systems
140 and information retrieval [26, 30]. These signals are attractive because they are abundant and naturally occurring, but
141 they are also indirect: they reflect behavior mediated by platform affordances, incentives, and power rather than explicit
142 judgments of quality or appropriateness. Prior work has shown that optimizing directly for engagement can distort
143 model behavior, amplifying polarized, sensational, or emotionally charged content [5].
144

145 A long line of critique cautions against equating observed behavior with normative endorsement or consent,
146 particularly in platform-mediated environments [22, 38]. In this work, we therefore treat acceptance signals as descriptive
147 evidence of how norms are enacted in practice rather than as ethically authoritative preferences. Our goal is not to
148 maximize engagement or infer individual utilities, but to recover community-level regularities in what is treated as
149 acceptable within specific contexts.
150

157 **Density and Geometry in Representation Space** Density estimation has a long history in statistics, with classical
 158 approaches such as kernel density estimation and Gaussian mixture models providing flexible non-parametric tools
 159 [43]. Recent advances in neural density estimation enable scalable likelihood modeling in high-dimensional spaces,
 160 including autoregressive models and normalizing flows [15, 42, 45]. Separately, work on representation geometry in
 161 NLP has shown that linguistic representations occupy structured, low-dimensional manifolds in embedding space
 162 [2, 36]. However, these techniques have primarily been used for generative modeling or representation analysis, rather
 163 than for norm inference or alignment. Building on these works, our approach interprets local density in embedding
 164 space as a community-conditioned acceptance signal, using geometric structure as supervision for alignment without
 165 explicit preference labels.
 166
 167

3 Method

171 Our goal is to extract an alignment signal from naturally occurring community behavior without relying on explicit
 172 preference annotations. We build on the observation—well established in both social computing and recommender
 173 systems—that communities already express preferences implicitly through what content they accept, engage with, and
 174 allow to persist. We show that repeated community acceptance induces measurable structure in representation space,
 175 and that this structure can be operationalized as a preference-aligned signal for language model alignment.
 176
 177



178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200 **Fig. 1. Conceptual Representation of the Community Consensus Surface.** The Z-axis represents a normative log-density,
 201 reflecting the implicit filtering of responses by community standards through moderation and collective feedback [11, 32]. High-density
 202 regions correspond to a coherent, low-dimensional manifold of accepted responses in representation space [2, 36]. The separation
 203 between preferred (r^+) and non-preferred (r^-) responses across this surface reflects an *acceptance–preference correspondence*,
 204 motivating preference learning and alignment without explicit annotation [13, 41, 44].
 205
 206
 207
 208

209 **3.1 Conceptualization: Community Acceptance as a Manifold**

210 Community norms are not imposed instantaneously; they emerge gradually through repeated interaction. Over time,
 211 online communities continuously filter participation through moderation, feedback, and collective attention. Responses
 212 that align with shared expectations are more likely to persist, receive engagement, and be incorporated into ongoing
 213 discourse. Responses that violate these expectations are disproportionately ignored, down-ranked, or removed.
 214

215 This repeated process of selection acts as a form of implicit norm formation and expression. As similar responses are
 216 consistently accepted across comparable contexts, they accumulate and reinforce one another, giving rise to behavioral
 217 and linguistic regularities at the community level. For intuition, consider responses as points scattered across a 3D
 218 landscape, where elevation represents community acceptance density (Figure 1). Accepted responses—those that persist,
 219 receive engagement, or align with community norms—cluster in peaks of high density (high elevation), forming a
 220 coherent acceptance manifold. In contrast, rejected or misaligned responses lie in sparse, low-density regions at lower
 221 elevation, farther from the community’s normative core. This geometric separation mirrors the acceptance–preference
 222 correspondence illustrated in Figure 1, where preferred (r^+) and non-preferred (r^-) responses occupy distinct regions
 223 of the surface. Prior work shows that such endogenous filtering dynamics produce durable patterns in language use,
 224 interaction style, and participation structure within communities [12, 14, 24].
 225

226 We formalize this phenomenon geometrically, drawing on representation geometry [2, 39] and density-based
 227 clustering [18], which show that linguistic and semantic structures occupy low-dimensional manifolds in embedding
 228 space. For a community c , we define an *acceptance manifold* \mathcal{M}_c as the region of representation space occupied by
 229 responses that the community accepts as appropriate or authentic. Note that acceptance here is not a binary property
 230 of individual messages (e.g., receiving upvotes or avoiding removal), but an aggregate notion that emerges over time
 231 from patterns of participation and persistence within the community. Let $E(r)$ denote the embedding of a response r .
 232 We model community acceptance as a density over representations,
 233

$$234 \quad p(r | c) = p(E(r) | c),$$

235 where higher density indicates stronger conformity with community norms. This view is consistent with distributional
 236 perspectives on language, in which semantic and pragmatic regularities correspond to geometric structure in embedding
 237 space [19, 39]. Here, however, geometry reflects not only semantic similarity, but also normative compatibility with a
 238 specific community.
 239

240 The gradient of the log-density,
 241

$$242 \quad \nabla_{E(r)} \log p(E(r) | c),$$

243 defines a continuous direction of increasing alignment with community norms. Unlike discrete preference labels, this
 244 signal is smooth, shared across responses, and derived directly from observed behavior.
 245

246 This framing induces an *acceptance–preference correspondence* assumption: responses that are repeatedly accepted by
 247 a community are more likely to align with that community’s preferences. Formally,
 248

$$249 \quad \arg \max_r p(r | c) \propto \arg \max_r \mathbb{E}[\text{preference}(r | c)].$$

250 This assumption parallels foundational results in revealed preference theory and implicit feedback learning, where
 251 aggregate behavioral signals—despite being noisy at the individual level—can be used to *empirically derive stable*
 252 *community-level preferences and norms* [22, 25, 26, 31]. Here, we treat acceptance behavior as a revealed signal of
 253

261 *collective consensus*: the norms that emerge from repeated, distributed decisions about what content is permitted,
262 engaged with, persists within a community.
263

264 **3.2 Problem Formulation**

265 Let $\mathcal{D}_c = \{r_i\}_{i=1}^N$ denote a corpus of responses that have been accepted by a community c through moderation,
266 engagement, or sustained participation. We embed each response as $x_i = E(r_i)$ and interpret their distribution in
267 representation space as an empirical record of the community’s acceptance behavior.
268

269 Our goal is to use it to *derive an implicit preference signal*. Specifically, we view local acceptance density as inducing
270 a partial ordering over candidate responses: responses that lie in higher-density regions of the acceptance manifold are
271 more consistent with community norms than those in low-density regions.
272

273 In standard alignment pipelines such as RLHF [13] or Direct Preference Optimization (DPO) [44], learning is driven
274 by explicit pairwise preference annotations. In contrast, we replace this supervision with a density-derived preference
275 signal. For a given context, candidate responses can be ranked according to their relative *acceptance density*,
276

$$\small 277 \quad p(E(r) \mid c),$$

278 which serves as a proxy for community preference in the absence of human-labeled comparisons.
279

280 We refer to this approach as **Density-Guided Response Optimization (DGRO)**. DGRO uses acceptance density to
281 construct implicit preferred and dispreferred response pairs, enabling standard preference-based objectives such as
282 DPO to be applied in annotation-scarce settings. This formulation aligns with prior work showing that geometric and
283 distributional structure can substitute for direct supervision in low-resource regimes [1, 21].
284

285 **3.3 Operationalizing Acceptance Density**

286 *Acceptance density* is a conceptual object defined over representation space. A key design choice is whether to estimate
287 this density globally across all community content or locally conditioned on context. A global estimate implicitly
288 assumes that community norms are uniform across topics and intents—a strong assumption that we later show obscures
289 preference signal. We therefore adopt a *local* density estimation strategy inspired by neighborhood-based semantic
290 modeling and local distributional structure [27, 33], while treating global density estimation as a baseline.
291

292 Given a query context h (e.g., a conversation history or post topic) with embedding $E(h)$, we define a context-
293 conditioned reference set
294

$$\small 295 \quad \mathcal{B}(h) = \text{kNN}(h; \{E(h_i)\}_{i=1}^N),$$

296 consisting of the k nearest contexts. Let $\{x_j\}_{j \in \mathcal{B}(h)}$ denote the embeddings of the corresponding accepted responses.
297

298 We estimate acceptance density using a kernel density estimator,
299

$$\small 300 \quad \log p(x \mid h, c) \propto \log \frac{1}{|\mathcal{B}(h)|} \sum_{j \in \mathcal{B}(h)} K_\sigma(x, x_j),$$

301 where K_σ is an RBF kernel with bandwidth set via the median heuristic. This gives us a context-sensitive estimate:
302 responses are scored relative to what the community accepts in similar situations, rather than against an aggregated
303 global pool.
304

305 If acceptance density reflects community preference structure, it should both correlate with labeled human preference
306 behavior in supervised settings and serve as a practical substitute for explicit preference annotations when used to train
307

313 alignment objectives such as DPO or RLHF. We evaluate both implications empirically in Section 5 before deploying
 314 DGRO in annotation-scarce domains.
 315

316 4 Experimental Setup

317 Our experiments are structured to answer three progressively stronger questions. First, we validate the *manifold*
 318 *hypothesis*: whether community preference signals exhibit local geometric structure in representation space. Next, we
 319 test whether *acceptance density* can *functionally replace* explicit human preference labels inside a standard optimization
 320 objective. Finally, we evaluate whether this signal can be used to align language models in real-world communities
 321 where preference annotations are unavailable.
 322

323 4.1 Validating the Manifold Hypothesis

324 First, we seek to validate the core premise of our approach: that preference signal exhibits *local geometric structure*
 325 in representation space. We use the Stanford Human Preferences (SHP) benchmark [20], which provides pairwise
 326 preference judgments across Reddit communities as well as an external quality signal measuring the strength of human
 327 agreement.
 328

329 **Communities and Data.** We select five subreddits with clearly distinct moderation regimes and community norms:
 330 *changemyview*, *askculinary*, *askhistorians*, *legaladvice*, and *explainlikeimfive*; these communities spanning different
 331 domains, interaction styles, and standards for acceptable responses. These communities differ substantially in how
 332 responses are evaluated, filtered, and endorsed, providing a controlled setting to test whether preference structure is
 333 shared across heterogeneous norms rather than driven by idiosyncrasies of a single community. Additional details
 334 about each community are provided in Appendix Table 4. Each example consists of a conversation history (prompt), a
 335 preferred response and a non-preferred response as determined by community member voting, along with metadata
 336 including the normalized ratio of upvotes between responses, which captures preference strength.
 337

338 **Testing the Manifold Hypothesis.** We ask whether responses preferred by a community tend to occupy higher-
 339 density regions of representation space than non-preferred responses, when density is estimated using only unlabeled
 340 data. To test this, we first embed all responses from the training split, treating them as an unlabeled reference pool
 341 that includes both preferred and non-preferred responses. We use a fixed sentence encoder to obtain representations,
 342 enabling density estimation over the resulting embedding space.¹ Preference information is not used at this stage, and
 343 training and test splits are kept strictly disjoint. For each prompt in the test set, candidate responses are embedded
 344 and ranked according to their acceptance density under the community distribution. We then evaluate whether the
 345 response with higher estimated density corresponds to the community-preferred response.
 346

347 **Evaluation Protocol.** For each test pair (h, r_+, r_-) , we compute a margin given by the difference in estimated acceptance
 348 density between r_+ and r_- . We report pairwise accuracy, $\mathbb{P}[\text{margin} > 0]$, as the primary metric. SHP provides the ratio
 349 of upvotes between responses normalized as an independent measure of community agreement strength. If preference
 350 signal is encoded in local geometry, our density-based margins should align with human preferences and improve as
 351 community agreement increases.
 352

353 **Baseline Methods.** Our model, which we call acceptance density, estimates density conditioned on the $k = 150$ nearest
 354 histories in embedding space; performance is robust to k and we report ablations in Appendix D.
 355

356 ¹We use the sentence-transformers/all-mnlp-base-v2 encoder (<https://huggingface.co/sentence-transformers/all-mnlp-base-v2>), a widely
 357 adopted semantic model that provides stable neighborhood structure across domains. Results are robust to alternative encoders; see Appendix B.
 358

365 We compare against the following baselines. (1) Random assigns random margins as a sanity check. (2) k -Nearest
 366 Neighbors (kNN) retrieves the $k = 150$ most similar training histories and predicts the majority preference label, testing
 367 whether neighborhood selection alone provides signal. (3) Global acceptance density estimates acceptance density using
 368 a fixed random subset ($|G| = 1000$) of training responses, testing whether density modeling without locality recovers
 369 preference structure. Finally, we report results for the (4) original supervised SHP reward model ². This model serves
 370 as an upper-bound reference, illustrating how closely density-based methods trained on unlabeled data approximate
 371 preference signals learned from large-scale human annotations.
 372

374 4.2 Acceptance Density as a Preference Proxy

375 Building on the validation in the previous section, we next test whether acceptance density can replace human-labeled
 376 comparisons within a standard preference optimization pipeline, and whether doing so induces preference behavior
 377 aligned with community judgments.
 378

379 To test this, we instantiate a density-based variant of Direct Preference Optimization (DPO) that uses acceptance
 380 density to construct implicit preference supervision. We follow the same procedure for estimating acceptance density
 381 described in the previous section, treating the training split as an unlabeled reference pool and never using ground-truth
 382 preference labels during training. Density-derived rankings are used to form implicit preferred and dispreferred response
 383 pairs, which are then used to train a policy model with the standard DPO objective.
 384

385 Unless otherwise specified, all main results initialize from a pre-trained Pythia-2.8B language model. This choice
 386 mirrors the experimental setup used in prior DPO work [44], which uses Pythia-2.8B [8] as a primary reference
 387 architecture for preference optimization; we do this for direct comparability and to isolate the effects of the preference
 388 signal rather than architectural differences. Evaluation is performed on a held-out test split.
 389

390 To assess robustness, we additionally repeat this procedure across multiple model architectures and parameter scales.
 391 These results show consistent trends, and we report deviations from the Pythia-2.8B baseline in Appendix C.
 392

393 **Evaluation protocol.** Evaluation is performed against *held-out ground-truth human preferences*. We assess alignment
 394 using length-normalized preference accuracy, defined as the fraction of held-out SHP pairs for which the model assigns
 395 higher average log-probability per response token to the human-preferred answer. Log-probabilities are computed over
 396 response tokens only, conditioned on the shared prompt, ensuring that differences in response length do not confound
 397 the comparison. This evaluation directly tests whether optimization driven solely by acceptance density induces models
 398 to prefer the same responses that human annotators judge as better, which is the central objective of preference-based
 399 alignment. We report this metric for both supervised DPO (trained on true human preference pairs) and acceptance
 400 density-guided DPO under identical architectures, prompts, and evaluation conditions. This isolates a fundamental
 401 question: whether acceptance density behaves *like a preference signal* when used as the sole source of supervision inside
 402 a standard alignment objective. Demonstrating competitive performance under this constraint establishes acceptance
 403 density as a viable substitute for explicit preference labels, justifying its use in annotation-scarce domains for alignment
 404 purposes.
 405

406 4.3 Application to Annotation-Scarce Communities

407 Following the validation experiments above, we apply density-guided response optimization (DGRO) in real-world
 408 communities where explicit preference annotations are unavailable, and evaluate its effectiveness for aligning language
 409

410 ²<https://huggingface.co/stanfordnlp/SteamSHP-flan-t5-xl>

417 Table 1. Communities and data sources used in DGRO evaluation. Validation communities provide explicit preference supervision,
 418 while application communities lack pairwise labels and rely on behavioral acceptance signals.

Community	Platform	Scale	Acceptance Signal
Q&A	Reddit (SHP)	10K–50K pairs	Pairwise human preferences
Eating Disorder Support	Twitter	~43K posts	Replies, retweets
Eating Disorder Support	Reddit	~9.2M posts	Upvotes, comment depth
Eating Disorder Support	Forums	~1.6M posts	Replies, thread continuation
Conflict Documentation	VK	~8.34M posts	Likes, reposts

427
 428
 429 models in practice. In these settings, acceptance density is used to construct implicit preference supervision. Using
 430 unlabeled community data, we estimate acceptance density as described in Section 4.1 and use it to form preferred and
 431 dispreferred response pairs. These density-derived pairs are then used to train policy models with a standard DPO
 432 objective. No explicit pairwise preference annotations are used at any stage.

433
 434 **Communities and data.** We evaluate DGRO in settings where general-purpose models fail to capture domain-specific
 435 norms, and where standard preference annotation methods pose significant ethical risks.

436
 437 Our primary evaluation focuses on eating disorder support communities across three platforms (Reddit, Twitter, and
 438 specialized forums). These communities exhibit highly sensitive, context-dependent communication norms distinct
 439 from general instruction-following behavior. Prior work indicates that off-the-shelf LMs often generate content that
 440 members find inauthentic or harmful [23, 47, 49]. To address the ethical challenges of working in this domain, our data
 441 curation was conducted in collaboration with clinical domain experts and medical professionals as part of a broader
 442 study on online community formation (with IRB approval). Using expert-verified implicit signals avoids the ethical
 443 pitfalls of explicit annotation, including consent issues and potential re-traumatization.

444
 445 To validate cross-lingual and political discourse generalization, we extend our evaluation to conflict documentation
 446 communities on VKontakte (VK), a Russian-language platform structurally comparable to Facebook [4]. These commu-
 447 nities focus on the aggregation and discussion of ongoing conflict documentation, exhibiting norms distinct from both
 448 Western platforms and general Russian-language corpora. Current multilingual models, typically trained on broad web
 449 corpora, lack exposure to these specific discourse conventions. Using these data, we test DGRO’s ability to adapt to
 450 distinct sociopolitical dialects where standard models often produce responses that appear foreign to the community’s
 451 authentic communication patterns.

452
 453 **Evaluation protocol.** The goal of this evaluation is to assess whether density-guided response optimization produces
 454 outputs that are judged as more appropriate and authentic within communities where explicit preference annotations
 455 are unavailable. As established in earlier sections, this analysis rests on two validated prerequisites: first, that acceptance
 456 density reliably recovers human pairwise preferences when such labels are available (Section 4.1); and second, that
 457 density-guided optimization induces model behavior aligned with those same human judgments on held-out data
 458 (Section 4.2). Having validated both the preference signal and its effect on model behavior, we now evaluate aligned
 459 models in annotation-scarce domains.

460
 461 Because these domains lack large-scale preference annotations, evaluation must rely on indirect judgments. We
 462 therefore anchor LLM-based evaluation in human expert assessment, first conducting expert evaluation on a stratified
 463 subset of 200 held-out examples (50 per domain), with three domain experts per community. This analysis verifies that
 464 aggregate LLM judgments track expert assessments along the same criteria. Following established practices in alignment

469 research [17, 48], we then use LLM-as-judge comparisons along two criteria—relevance (contextual appropriateness to
 470 the prompt and community norms) and authenticity (consistency with the community’s characteristic tone, framing,
 471 and interactional style)—as a scaling mechanism for this previously validated human preference structure, rather than
 472 as an independent source of normative authority. Evaluation is performed in a head-to-head setting, where judges
 473 compare a model-generated response against an actual response drawn from the target community for the same
 474 context, using examples held out from all training stages. We use three frontier language models as judges: GPT-5-nano,
 475 Claude-4.5-Haiku, and Gemini-2.5-Flash.³ Each model is queried three times with randomized response order to control
 476 for positional bias, yielding nine judgments per comparison.

477 **Baselines and model variants.** We compare DGRO against three baselines: (1) an off-the-shelf instruction-tuned model
 478 (Base), (2) supervised fine-tuning on community text (SFT), and (3) in-context learning with community exemplars
 479 (ICL). To isolate density-guided optimization from supervised pre-training effects, we conduct ablations controlling for
 480 training compute.

481 All comparisons use identical architectures, decoding parameters, and context construction. As explored in prior
 482 sections and further examined in Appendix C, variation across model architectures and scales appears limited for
 483 preference alignment under density-guided DPO. As such, we fix the base model to Pythia-2.8B in this section in order
 484 to focus on the behavioral and normative effects of the alignment procedure itself, rather than introducing additional
 485 variation from differences in model capacity or representation.

486 5 Results

487 Table 2. Pairwise accuracy across communities for unsupervised and supervised methods. Accuracy is reported as mean \pm bootstrap
 488 half-width, $\delta = \frac{1}{2}(\text{hi} - \text{lo})$, computed independently per subreddit. Supervised Model (RM) denotes the supervised reward model
 489 (stanfordnlp/SteamSHP-flan-t5-xl), trained with human preference annotations and included as a reference upper bound.

Method	r/askhr	r/askbaking	r/askculinary	r/askhistorians	r/changemyview	r/asksocialscience	r/asksciencefiction
Random	0.50 \pm 0.00	0.50 \pm 0.00					
kNN	0.55 \pm 0.03	0.49 \pm 0.01	0.50 \pm 0.02	0.58 \pm 0.03	0.49 \pm 0.03	0.50 \pm 0.03	0.52 \pm 0.04
Global Acceptance Density	0.68 \pm 0.01	0.53 \pm 0.03	0.51 \pm 0.03	0.60 \pm 0.09	0.57 \pm 0.04	0.59 \pm 0.03	0.49 \pm 0.03
Local Acceptance Density	0.71 \pm 0.03	0.60 \pm 0.02	0.57 \pm 0.04	0.72 \pm 0.03	0.61 \pm 0.03	0.64 \pm 0.01	0.65 \pm 0.02
Supervised Model (RM)	0.75 \pm 0.03	0.65 \pm 0.03	0.72 \pm 0.01	0.74 \pm 0.02	0.68 \pm 0.02	0.80 \pm 0.03	0.72 \pm 0.02

505 5.1 Validating the Manifold Hypothesis

506 We begin by evaluating the central empirical claim of this work: that preference signal is encoded in the local geometry
 507 of representation space (acceptance density). If this hypothesis holds, preserving local manifold structure should recover
 508 human preferences, while methods that destroy or ignore locality should fail.

509 **Preference signal is recovered by geometry-preserving density.** We find that preference signals, typically requiring
 510 explicit supervision, can be recovered through the geometry-preserving properties of local density. As shown in Table 2
 511 and Figure 4, local acceptance density consistently identifies community-preferred responses across all evaluated
 512 subreddits, achieving 58–72% pairwise accuracy and substantially outperforming all unsupervised baselines.

513 Our results suggest that recovering this structure requires a balance between locality and distributional modeling. At
 514 one extreme, global acceptance density performs near chance; by aggregating across heterogeneous contexts, it likely

515 ³GPT-5-nano (<https://platform.openai.com/docs/models>), Claude-4.5-Haiku (<https://www.anthropic.com/claude>), and Gemini-2.5-Flash (<https://ai.google.dev/gemini/api/docs/models>)

521 averages away the nuanced structures that encode specific preferences. At the other extreme, simple kNN retrieval
 522 gives only modest gains above random chance, indicating that merely identifying nearby examples is insufficient: one
 523 must model the relative distribution (i.e. the “shape”) of those examples.

524 Notably, local density approaches the performance of supervised reward models despite having no access to explicit
 525 preference labels. We find that the performance gap between our unsupervised method and supervised models narrows
 526 significantly in instances of high human agreement (Figure 4). This suggests that a substantial portion of the signal
 527 leveraged by traditional reward models is not “new” information provided by labels, but is instead already latent within
 528 the local manifold geometry of community-accepted discourse.

529 Additionally, we find a clear positive relationship between human agreement strength and preference recovery by
 530 local acceptance density. When aggregating across communities, accuracy exhibits a moderate, statistically robust
 531 correlation with agreement strength ($\rho_s = 0.48, p < 10^{-4}$), indicating that density-guided alignment performs best in
 532 regions where community preferences are most clearly differentiated.

533 This trend is even more pronounced within several individual communities. Subreddits such as *r/asksciencefiction*
 534 ($\rho_s = 0.90, p < 0.001$), *r/askhr* ($\rho_s = 0.81, p = 0.015$), and *r/askbaking* and *r/askculinary* (both $\rho_s = 0.75, p < 0.05$)
 535 exhibit strong, statistically significant correlations, suggesting that local acceptance density closely tracks human
 536 consensus when norms are well-defined. In contrast, communities with smaller evaluation sets and sparser agree-
 537 ment bins (e.g., *r/askhistorians*, *r/asksocialscience*) show weaker correlations, consistent with limited statistical
 538 power (rather than a deviation from the overall monotonic trend). Figure 5 and Table 8 (Appendix) provide the full
 539 per-community breakdown.

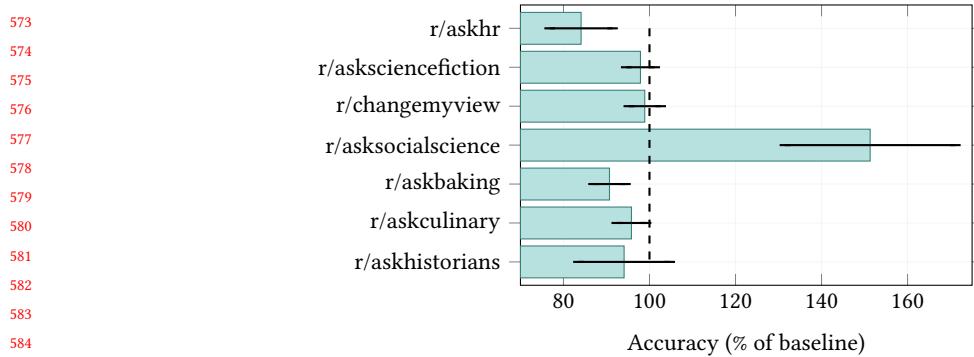
540 This pattern provides direct empirical support for the acceptance–preference correspondence posited in Section 3.
 541 When community agreement is weak, acceptable responses span broader and less differentiated regions of representation
 542 space, limiting the recoverability of preference signal. As consensus strengthens, accepted responses collapse into
 543 tighter, more coherent regions of the manifold, making relative density an increasingly reliable indicator of preference.
 544 Accordingly, accuracy improves systematically with human agreement strength, with local acceptance density perform-
 545 ing best precisely when community preference is most clearly expressed. This dependence on agreement strength is
 546 inconsistent with a fixed estimator bias: if density merely favored certain responses irrespective of context, accuracy
 547 would not vary predictably with consensus. Instead, the observed relationship indicates that local geometry captures
 548 meaningful structure in community judgment rather than an artifact of density estimation.

557 5.2 Acceptance Density as a Preference Proxy

558 Having established that acceptance density behaves like a preference signal when preference is observable, we now
 559 evaluate a stronger claim: whether this signal can functionally approximate or replace explicit human preference labels
 560 inside a standard alignment objective.

561 **DGRO recovers supervised preference structure.** As shown in Figure 2, constructing preference pairs from relative
 562 position on the acceptance manifold is sufficient to induce preference behavior aligned with community judgments.
 563 Across all evaluated communities, models trained using acceptance density-derived pseudo-pairs recover a substantial
 564 fraction of the accuracy achieved by fully supervised DPO, despite having no access to human-labeled comparisons
 565 during training.

566 These results indicate that acceptance density functions as a usable preference signal when integrated into a standard
 567 alignment pipeline, inducing models to prefer responses that align with community judgments. Combined with the
 568



573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586 Fig. 2. Relative accuracy of DRGO-aligned models expressed as a percentage of baseline DPO performance, computed as $100 \times (DRGO/baseline)$, where 100% denotes parity with the baseline. Error bars denote ± 1 standard error estimated via bootstrap
 587 resampling ($n=500$), with uncertainty propagated using a first-order delta method.
 588
 589

590
 591 validation results in Section 4.1, this supports the use of acceptance density as a practical substitute for explicit preference
 592 supervision.
 593

594 5.3 Application to Annotation-Scarce Communities.

595 Having shown that acceptance density recovers human preference structure and can substitute for labeled comparisons
 596 in controlled settings, we next examine its utility in real-world communities where explicit preference supervision
 597 is completely unavailable. In these domains, alignment must rely on naturally occurring acceptance signals rather
 598 than curated annotations, making them a direct test of whether density-guided preference learning provides practical
 599 advantages over standard adaptation methods. Before comparing alignment methods, we verify that LLM-based
 600 judgments reflect human preference in these domains. On a stratified subset of 200 held-out examples, aggregated
 601 LLM-judge rankings correlate strongly with human expert preferences (explored further in Appendix H), supporting
 602 their use for large-scale evaluation.
 603

604 **DGRO consistently outperforms baselines.** Illustrated in Table 3, across all domains, DGRO-based alignment
 605 achieves consistent gains over baselines despite using the same underlying training data. For example, on ED-Reddit,
 606 DGRO wins 58.8% of head-to-head comparisons against SFT ($p < 0.001$). Similar patterns emerge across other contexts,
 607 where DGRO maintains a significant advantage over SFT in direct comparisons.
 608

609 The quantitative advantage of DGRO over baselines is reflected in qualitative differences in response authenticity.
 610 Table 10 presents representative examples from both ED-Reddit and VK Conflict discourse, comparing model outputs
 611 against real community responses for the same context. Across domains, the Base and ICL baselines frequently default
 612 to generic, non-situated language that lacks the tone, specificity, or interactional norms characteristic of the target
 613 communities. Supervised fine-tuning (SFT) improves topical relevance but often exhibits repetitive phrasing and diffuse
 614 affect, suggesting partial adaptation to surface content without internalizing community-specific modes of expression.
 615 In contrast, DGRO outputs more closely resemble authentic community participation, showing locally appropriate
 616 framing, specificity, and rhetorical structure.
 617

618 These results demonstrate that density-guided optimization captures preference structure beyond what supervised
 619 fine-tuning alone recovers. While SFT adapts models to community vocabulary and style, DGRO’s manifold-based
 620 Manuscript submitted to ACM

625 Table 3. LLM-as-judge head-to-head comparison of DGRO against baseline alignment approaches across annotation-scarce com-
 626 munities. Judges compare paired model outputs for the same prompt, using real community responses as contextual grounding for
 627 relevance and authenticity. Win rates indicate the percentage of comparisons in which DGRO is preferred (mean \pm 95% CI).

Community	DGRO vs Base	DGRO vs ICL	DGRO vs SFT
ED-Reddit	75.4 \pm 2.9%	65.8 \pm 3.1%	53.8 \pm 3.1%
ED-Forum	72.2 \pm 3.2%	64.1 \pm 4.4%	57.6 \pm 3.3%
ED-Twitter	76.1 \pm 3.0%	66.3 \pm 4.1%	56.9 \pm 2.6%
VK State	80.7 \pm 3.1%	59.9 \pm 3.2%	55.3 \pm 2.0%

635
 636 objective appears to encode finer-grained distinctions about what makes responses sound authentic within specific
 637 contexts.
 638

640 6 Analysis

641 6.1 Manifold Structure and Preference Signal

643 **Preference signal is encoded in local manifold structure.** Across communities, acceptance density corresponds
 644 reliably with human preference when estimated locally in representation space. Conditioning density on nearby contexts
 645 preserves preference structure that is obscured by global aggregation, which collapses heterogeneous situations into
 646 a single distribution. This dependence on locality is likely not incidental. Preference signal degrades when density
 647 is estimated over neighborhoods that are either too broad—approaching global behavior—or too narrow to provide
 648 stable estimation. The resulting pattern indicates that community preferences are neither uniform nor purely instance-
 649 specific, but organized at an intermediate, context-dependent scale.
 650

652 **Acceptance density is data-efficient.** As shown in Table 7, estimation of community preference via acceptance density
 653 approaches peak performance with relatively little training data, with the required amount varying by community.
 654 Across all communities, the normalized area under the saturation curve (AUSC) exceeds 0.91, indicating that preference
 655 structure can be recovered in a sample-efficient manner.
 656

658 6.2 Failure Modes and Limitations

660 While DGRO provides a useful preference signal in many settings, its effectiveness depends on the availability of
 661 meaningful acceptance structure in representation space. When this structure is weak or absent, the density-derived
 662 signal can become unreliable.
 663

664 **Uninformative density in sparse manifold regions.** DGRO relies on acceptance density to construct pseudo-
 665 preference pairs during training. When candidate responses lie far from the acceptance manifold, local density estimates
 666 become noisy and provide little discriminative signal. In such cases, pseudo-pairs may reflect superficial semantic
 667 proximity rather than contextual appropriateness. We explore an example case in Appendix K.
 668

669 **Amplification of community biases.** By design, DGRO reproduces patterns present in community acceptance data,
 670 including harmful norms or misinformation. In polarized or toxic communities, the resulting preference signal reflects
 671 those same biases. Because DGRO derives preference structure empirically from observed acceptance behavior, it does
 672 not impose external normative constraints during training. Thus, norm correction must occur outside the preference
 673 signal itself, for example through data filtering or post-hoc safety interventions. Future work could explore hybrid
 674 approaches combining density-guided learning with external normative constraints
 675

677 DGRO is not suitable as a general-purpose or platform-wide alignment mechanism. Because acceptance density
 678 reflects existing participation dynamics and power asymmetries, applying DGRO at scale risks entrenching dominant
 679 norms, amplifying coordinated manipulation, and obscuring contestation. Without explicit governance, community
 680 consent, and mechanisms for redress, density-guided optimization should be treated as an analytical instrument rather
 681 than a deployment-ready alignment strategy.

682 These limitations suggest clear boundaries: DGRO is best suited to stable communities with established norms,
 683 sufficient scale for density estimation, and values aligned with deployment objectives. When communities are small,
 684 polarized, rapidly evolving, or exhibit harmful norms, explicit human supervision remains necessary.

685 7 Discussion

686 Language models increasingly operate in settings where communicative norms are community-specific and diverge
 687 from generic instruction-following behavior. Our results suggest that these norms give rise to stable, community-level
 688 structure in representation space, which can be captured through acceptance density. This structure reflects not only
 689 semantic similarity, but alignment with what a community considers appropriate.

690 DGRO operationalizes this observation by using acceptance density as a source of preference supervision. Rather
 691 than relying on elicited pairwise judgments, the method constructs preference signal directly from unlabeled community
 692 behavior. Across the settings we study, this signal is sufficient to guide alignment in domains where explicit preference
 693 annotations are impractical, costly, or ethically constrained.

701 7.1 Ethical Considerations

702 While DGRO uses only publicly observable signals, the method raises ethical concerns warranting careful consideration
 703 before deployment. The question of who speaks for a community becomes important. Acceptance patterns reflect active
 704 participants, moderators, and platform affordances, which may not represent full community values. Marginalized
 705 voices, silent lurkers, or departed members do not contribute to the signal, yet deployment affects them. DGRO-based
 706 alignment uses revealed preferences of those who remain, potentially encoding values of whoever holds power rather
 707 than the community as a whole.

708 Additionally, harm amplification poses a serious risk. Because DGRO derives preference structure directly from
 709 observed community behavior, it reproduces existing norms, including harmful or exclusionary ones. Unlike supervised
 710 alignment, it does not introduce an external mechanism for norm correction during training; mitigation must therefore
 711 rely on data filtering or post-hoc constraints. Vulnerability to manipulation creates additional concerns. Adversaries
 712 who can influence acceptance through coordinated engagement or vote manipulation can poison the learned preference
 713 structure. This is particularly concerning in communities with weak integrity controls or concentrated power.

714 DGRO deployment requires careful ethical assessment beyond technical validation. At minimum: transparency about
 715 community data use, mechanisms for feedback and opt-out where feasible, ongoing monitoring for drift, and human
 716 oversight in high-stakes domains. For sensitive communities like mental health forums, stakeholder consultation should
 717 precede deployment. The broader question is whether making alignment more accessible ultimately serves community
 718 interests. Reducing barriers could empower under-resourced communities to shape AI behavior appropriately, or
 719 empower exploitation of community data and amplification of harmful norms. These questions require ongoing
 720 dialogue between researchers, communities, and stakeholders about appropriate governance.

729 8 Conclusion

730
731 We introduce density-guided response optimization (DGRO), a method for aligning language models to community
732 norms without relying on explicit preference annotations. By modeling the distribution of responses that communities
733 consistently accept, DGRO infers implicit preference structure from local density in representation space.

734 Across validation experiments, models aligned using DGRO outperform baseline approaches despite having no access
735 to human-labeled preference comparisons during training, relying only on naturally occurring community behavior.
736 These results indicate that acceptance signals encode sufficient structure to support preference-based alignment.

737 Our findings suggest that community acceptance provides a practical, annotation-free source of alignment signal,
738 enabling model adaptation in settings where explicit preference elicitation is infeasible, costly, or ethically constrained.

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781 9 Endmatter Sections**782 9.1 Generative AI Usage Statement**

783
784 The authors did not use generative AI tools for this manuscript. The authors wrote and prepared all of the content for
785 this manuscript.
786

787 9.2 Ethical Considerations Statement

788 This work uses publicly available data drawn from online communities and does not involve direct interaction with
789 human subjects, intervention in deployed systems, or the collection of private or non-public information. All data were
790 handled in accordance with applicable platform terms and established norms for CSS research. We did not attempt to
791 identify individuals, and our analysis was conducted at an aggregate level focused on community-wide patterns.
792

793 The primary ethical risks associated with this work come from the potential downstream use of DGRO to model and
794 reproduce community norms. These risks are discussed in detail in Section 7.1. In that section and here, we emphasize
795 that acceptance-based signals reflect the behavior of active and empowered participants rather than comprehensive or
796 consensual community values. Additionally, we note that DGRO should not be treated as a normative authority or
797 deployed without appropriate oversight.
798

799 We do not claim that DGRO mitigates harmful norms or resolves questions of legitimacy. Instead, we treat it as
800 a descriptive method whose responsible use depends on transparency, community governance, and domain-specific
801 safeguards. Potential adverse impacts and limitations are analyzed in Section 7.1, and we outline conditions under
802 which deployment would be inappropriate or ethically unsafe.
803

804
805

806
807

808
809

810
811

812
813

814
815

816
817

818
819

820
821

822
823

824
825

826
827

828
829

830
831

832

833 References

834 [1] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. 2016. A latent variable model approach to pmi-based word embeddings.
 835 *Transactions of the Association for Computational Linguistics* 4 (2016), 385–399.

836 [2] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. 2018. Linear algebraic structure of word senses, with applications to
 837 polysemy. *Transactions of the Association for Computational Linguistics* 6 (2018), 483–495.

838 [3] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron
 839 McKinnon, et al. 2022. Constitutional ai: Harmlessness from ai feedback. *arXiv preprint arXiv:2212.08073* (2022).

840 [4] KS Baran and WG Stock. 2015. Facebook has been smacked down. The Russian special way of SNSs: Vkontakte as a case study. In *Proceedings of the
 841 2nd European conference on social media (ECSM 2015)*, Vol. 9. 574–582.

842 [5] Pablo Barberá. 2020. Social media, echo chambers, and political polarization. *Social media and democracy: The state of the field, prospects for reform*
 843 (2020), 34–55.

844 [6] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. 2010. A theory of learning from
 845 different domains. *Machine learning* 79, 1 (2010), 151–175.

846 [7] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language
 847 Models Be Too Big? In *Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency* (Virtual Event, Canada) (FAccT '21).
 848 Association for Computing Machinery, New York, NY, USA, 610–623. [doi:10.1145/3442188.3445922](https://doi.org/10.1145/3442188.3445922)

849 [8] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu
 850 Purohit, USVSN Sai Prashanth, Edward Raff, et al. 2023. Pythia: A suite for analyzing large language models across training and scaling. In
 851 *International Conference on Machine Learning*. PMLR, 2397–2430.

852 [9] Steven Bird. 2020. Decolonising speech and language technology. In *Proceedings of the 28th international conference on computational linguistics*.
 853 3504–3519.

854 [10] Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion Androutsopoulos. 2020. LEGAL-BERT: The muppets straight
 855 out of law school. *arXiv preprint arXiv:2010.02559* (2020).

856 [11] Eshwar Chandrasekharan, Umashanthi Pavalanathan, Anirudh Srinivasan, Adam Glynn, Jacob Eisenstein, and Eric Gilbert. 2017. You can't stay
 857 here: The efficacy of reddit's 2015 ban examined through hate speech. *Proceedings of the ACM on human-computer interaction* 1, CSCW (2017), 1–22.

858 [12] Eshwar Chandrasekharan, Mattia Samory, Shagun Jhaver, Hunter Charvat, Amy Bruckman, Cliff Lampe, Jacob Eisenstein, and Eric Gilbert. 2018. The
 859 Internet's hidden rules: An empirical study of Reddit norm violations at micro, meso, and macro scales. *Proceedings of the ACM on Human-Computer
 860 Interaction* 2, CSCW (2018), 1–25.

861 [13] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. 2017. Deep reinforcement learning from human preferences.
 862 *Advances in neural information processing systems* 30 (2017).

863 [14] Cristian Danescu-Niculescu-Mizil, Robert West, Dan Jurafsky, Jure Leskovec, and Christopher Potts. 2013. No country for old members: User
 864 lifecycle and linguistic change in online communities. In *Proceedings of the 22nd international conference on World Wide Web*. 307–318.

865 [15] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2016. Density estimation using real nvp. *arXiv preprint arXiv:1605.08803* (2016).

866 [16] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang,
 867 Angela Fan, et al. 2024. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783* (2024).

868 [17] Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. 2024. Length-controlled alpacaeval: A simple way to debias automatic
 869 evaluators. *arXiv preprint arXiv:2404.04475* (2024).

870 [18] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-based algorithm for discovering clusters in large spatial databases
 871 with noise. In *kdd*, Vol. 96. 226–231.

872 [19] Kawin Ethayarajh. 2019. How contextual are contextualized word representations? Comparing the geometry of BERT, ELMo, and GPT-2 embeddings.
 873 *arXiv preprint arXiv:1909.00512* (2019).

874 [20] Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. 2022. Understanding dataset difficulty with V-usable information. In *International
 875 Conference on Machine Learning*. PMLR, 5988–6008.

876 [21] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. 2012. A kernel two-sample test. *The journal of
 877 machine learning research* 13, 1 (2012), 723–773.

878 [22] D Wade Hands. 2014. Paul Samuelson and revealed preference theory. *History of political economy* 46, 1 (2014), 85–116.

879 [23] Zihao He, Minh Duc Chu, Rebecca Dorn, Siyi Guo, and Kristina Lerman. 2024. Community-cross-instruct: Unsupervised instruction generation for
 880 aligning large language models to online communities. *arXiv preprint arXiv:2406.12074* (2024).

881 [24] Benjamin D Horne, Sibel Adali, and Sujoy Sikdar. 2017. Identifying the social signals that drive online discussions: A case study of reddit communities.
 882 In *2017 26th International Conference on Computer Communication and Networks (ICCCN)*. IEEE, 1–9.

883 [25] Hendrik S Houthakker. 1950. Revealed preference and the utility function. *Economica* 17, 66 (1950), 159–174.

884 [26] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback datasets. In *2008 Eighth IEEE international conference
 885 on data mining*. Ieee, 263–272.

886 [27] Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. 2012. Improving word representations via global context and multiple
 887 word prototypes. In *Proceedings of the 50th annual meeting of the association for computational linguistics (Volume 1: Long papers)*. 873–882.

885 [28] Ben Hutchinson, Vinodkumar Prabhakaran, Emily Denton, Kellie Webster, Yu Zhong, and Stephen Denuyl. 2020. Social biases in NLP models as
886 barriers for persons with disabilities. *arXiv preprint arXiv:2005.00813* (2020).

887 [29] Shagun Jhaver, Amy Bruckman, and Eric Gilbert. 2019. Does transparency in moderation really matter? User behavior after content removal
888 explanations on reddit. *Proceedings of the ACM on Human-Computer Interaction* 3, CSCW (2019), 1–27.

889 [30] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip Radlinski, and Geri Gay. 2007. Evaluating the accuracy of implicit feedback
890 from clicks and query reformulations in web search. *ACM Transactions on Information Systems (TOIS)* 25, 2 (2007), 7–es.

891 [31] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased learning-to-rank with biased feedback. In *Proceedings of the tenth
892 ACM international conference on web search and data mining*. 781–789.

893 [32] Cliff Lampe and Paul Resnick. 2004. Slash (dot) and burn: distributed moderation in a large online conversation space. In *Proceedings of the SIGCHI
894 conference on Human factors in computing systems*. 543–550.

895 [33] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. In *International conference on machine learning*. PMLR,
1188–1196.

896 [34] Jinyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 2020. BioBERT: a pre-trained biomedical
897 language representation model for biomedical text mining. *Bioinformatics* 36, 4 (2020), 1234–1240.

898 [35] Jochen L Leidner and Vassilis Plachouras. 2017. Ethical by design: Ethics best practices for natural language processing. In *Proceedings of the First
899 ACL workshop on ethics in natural language processing*. 30–40.

900 [36] Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, and Lei Li. 2020. On the sentence embeddings from pre-trained language models.
901 *arXiv preprint arXiv:2011.05864* (2020).

902 [37] Chen Cecilia Liu, Iryna Gurevych, and Anna Korhonen. 2025. Culturally aware and adapted nlp: A taxonomy and a survey of the state of the art.
903 *Transactions of the Association for Computational Linguistics* 13 (2025), 652–689.

904 [38] J Nathan Matias. 2019. Preventing harassment and increasing group participation through social norms in 2,190 online science discussions.
905 *Proceedings of the National Academy of Sciences* 116, 20 (2019), 9785–9789.

906 [39] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed representations of words and phrases and their
907 compositionality. *Advances in neural information processing systems* 26 (2013).

908 [40] Elinor Ostrom. 1990. *Governing the commons: The evolution of institutions for collective action*. Cambridge university press.

909 [41] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex
910 Ray, et al. 2022. Training language models to follow instructions with human feedback. *Advances in neural information processing systems* 35 (2022),
27730–27744.

911 [42] George Papamakarios, Theo Pavlakou, and Iain Murray. 2017. Masked autoregressive flow for density estimation. *Advances in neural information
912 processing systems* 30 (2017).

913 [43] Emanuel Parzen. 1962. On estimation of a probability density function and mode. *The annals of mathematical statistics* 33, 3 (1962), 1065–1076.

914 [44] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. 2023. Direct preference optimization: Your
915 language model is secretly a reward model. *Advances in neural information processing systems* 36 (2023), 53728–53741.

916 [45] Danilo Rezende and Shakir Mohamed. 2015. Variational inference with normalizing flows. In *International conference on machine learning*. PMLR,
1530–1538.

917 [46] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre
918 Ramé, Morgane Rivière, et al. 2025. Gemma 3 technical report. *arXiv preprint arXiv:2503.19786* (2025).

919 [47] Bertie Vidgen and Leon Derczynski. 2020. Directions in abusive language training data, a systematic review: Garbage in, garbage out. *Plos one* 15,
920 12 (2020), e0243300.

921 [48] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al.
922 2023. Judging llm-as-a-judge with mt-bench and chatbot arena. *Advances in neural information processing systems* 36 (2023), 46595–46623.

923 [49] Caleb Ziems, Jane Dwivedi-Yu, Yi-Chia Wang, Alon Halevy, and Diyi Yang. 2023. NormBank: A knowledge bank of situational social norms. *arXiv
924 preprint arXiv:2305.17008* (2023).

925

926

927

928

929

930

931

932

933

934

935

937 **A Full Dataset Info – Reddit**

938

939 Table 4. Dataset sizes for Reddit communities used in evaluation.

940

Subreddit	Train	Validation	Test	Total
r/askhr	8,295	641	395	9,331
r/askbaking	44,007	2,096	1,544	47,647
r/askculinary	45,710	2,094	2,563	50,367
r/askhistorians	3,264	113	164	3,541
r/changemyview	38,173	1,637	1,836	41,646
r/asksocialscience	2,706	147	188	3,041
r/asksciencefiction	29,382	1,576	1,987	32,945

951

952 **B Embeddings**

953

954

955 Table 5. Effect of embedding model choice on local acceptance density performance. Accuracy is reported as mean \pm bootstrap

956 half-width, $\delta = \frac{1}{2}(\text{hi} - \text{lo})$, computed independently per subreddit. Results are shown for the local density method using different

957 sentence embedding models to construct the acceptance manifold.

958

Embedding Model	r/askhr	r/askbaking	r/askculinary	r/askhistorians	r/changemyview	r/asksocialscience	r/asksciencefiction
MPNet (default)	0.71 ± 0.03	0.60 ± 0.02	0.57 ± 0.04	0.72 ± 0.03	0.61 ± 0.03	0.64 ± 0.01	0.65 ± 0.02
all-MiniLM-L6-v2	0.70 ± 0.03	0.59 ± 0.02	0.56 ± 0.04	0.70 ± 0.04	0.60 ± 0.03	0.63 ± 0.02	0.64 ± 0.02
E5-large-v2	0.72 ± 0.03	0.61 ± 0.02	0.58 ± 0.04	0.73 ± 0.03	0.62 ± 0.03	0.65 ± 0.02	0.66 ± 0.02

963

964 **C Model Robustness**

965

966 Table 6. Deviation in length-normalized preference accuracy on held-out SHP human preference pairs relative to the Pythia-2.8B

967 baseline. Reported values indicate mean difference (in percentage points) \pm bootstrap standard error, computed under identical

968 prompts, objectives, and evaluation conditions. Deviations are small across base models, indicating that acceptance density-guided

969 DPO induces consistent preference alignment behavior largely independent of model architecture, which is consistent with prior

970 work [44].

971

Base Model	Preference Accuracy Δ (pp)
google/gemma-2b [46]	-0.4 ± 0.4
google/gemma-7b [46]	$+0.3 \pm 0.5$
meta-llama/Llama-3.2-3B [16]	$+0.1 \pm 0.4$
meta-llama/Llama-3.1-8B [16]	$+0.6 \pm 0.6$

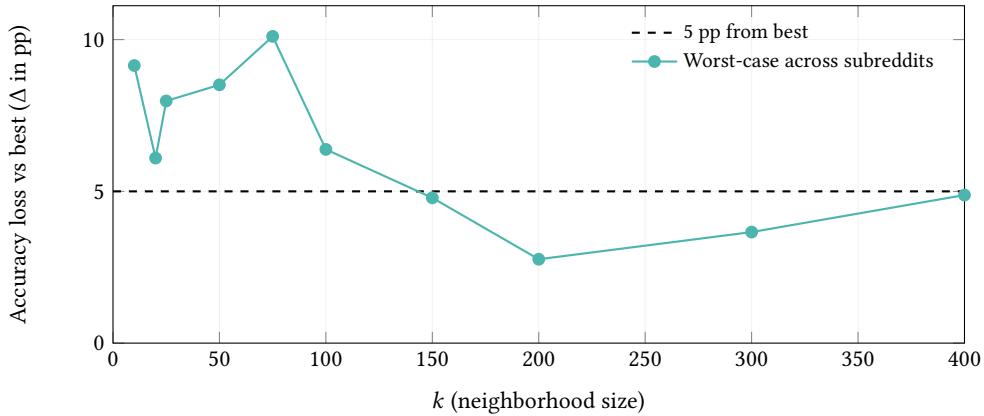
D K Robustness


Fig. 3. Local accuracy saturates quickly with neighborhood size. Shown is the worst-case absolute accuracy loss across communities relative to each community's best-performing neighborhood size, demonstrating that performance remains within a few percentage points of optimal across a wide range of k .

989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040

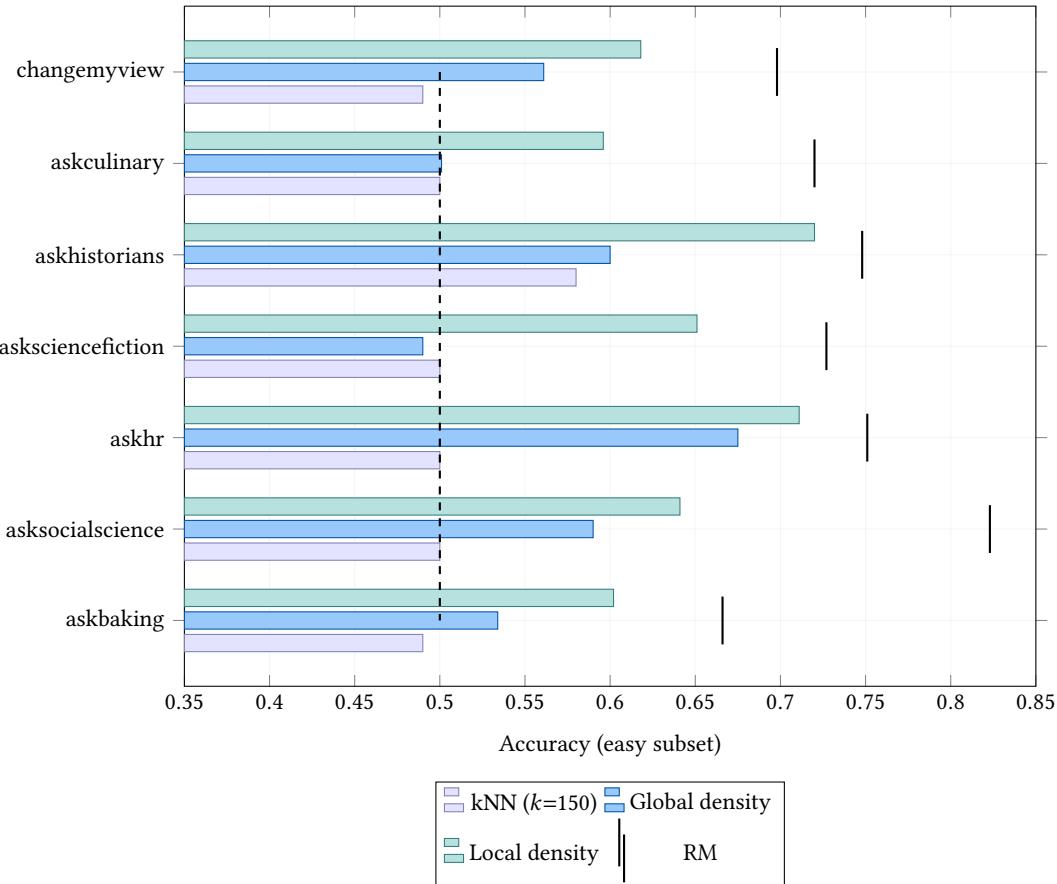
E Accuracy Of Unsupervised Models – Visualized


Fig. 4. Accuracy across communities. Bars show kNN, global density, and local density baselines, evaluated on the easy subset of examples. Vertical ticks denote supervised reward model (RM) accuracy. The dashed vertical line at 0.50 marks random-chance performance.

F Data Efficiency

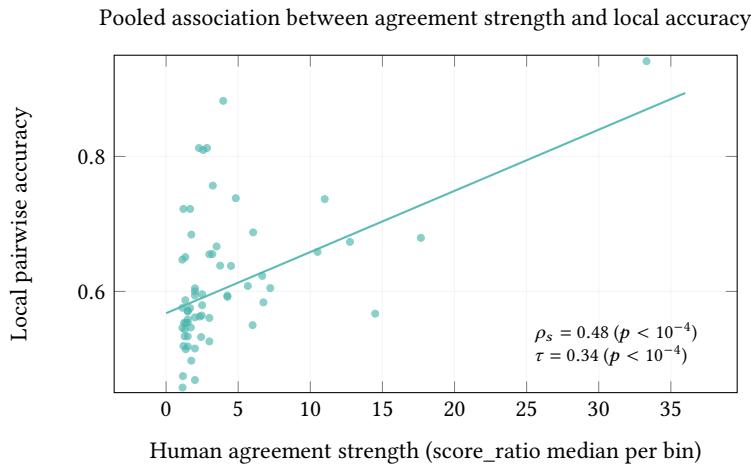
Table 7. Data efficiency of the local method across communities. We report the normalized area under the saturation curve (AUSC) and the number of training pairs required to reach 95% of peak accuracy, both computed using accuracy expressed as a percentage of each method's peak performance. Higher AUSC and lower pair counts indicate faster saturation under limited supervision.

Subreddit	AUSC	Pairs to 95% peak
r/askhr	0.971	50
r/askbaking	0.985	150
r/askculinary	0.981	250
r/askhistorians	0.920	1450
r/changemyview	0.978	250
r/asksocialscience	0.950	250
r/asksciencefiction	0.961	850

1145 G Correlation with Human Agreement

1146
 1147 Table 8. Per-subreddit correlations between human agreement strength and local accuracy. For each subreddit, we bin comment
 1148 pairs by agreement strength (median score_ratio per bin) and compute local pairwise accuracy within each bin. We then assess the
 1149 monotonic relationship between bin-level agreement strength and bin-level accuracy using Spearman's ρ . Five of seven subreddits
 1150 show significant positive correlations ($p < 0.05$), with particularly strong effects in r/asksciencefiction ($\rho_s = 0.90$) and r/askhr
 1151 ($\rho_s = 0.81$). Asterisks denote significance levels: * $p < 0.05$, *** $p < 0.001$.

1153 Subreddit	1154 ρ_s	1155 p-value
1155 r/askhr	1156 0.81	1157 0.015*
1156 r/askbaking	1158 0.75	1159 0.013*
1157 r/askculinary	1159 0.75	1160 0.020*
1158 r/askhistorians	1160 0.45	1161 0.197
1159 r/changemyview	1161 0.60	1162 0.067
1160 r/asksocialscience	1163 0.26	1164 0.500
1161 r/asksciencefiction	1165 0.90	1166 <0.001***



1181 Fig. 5. **Higher human agreement correlates with higher local accuracy.** Each point is an agreement-strength bin from a
 1182 subreddit. The moderately strong positive correlation ($\rho_s = 0.48, p < 10^{-4}$) suggests that judge accuracy improves in regions where
 1183 community preferences are more clearly differentiated. The fitted line is shown for visualization only; significance is assessed with
 1184 rank correlations.

1197 **H Reliability of Human and LLM-Based Evaluation**

1198 To understand the reliability of LLM-based evaluation in annotation-scarce domains, we conducted human expert
 1199 evaluation on a stratified subset of 200 held-out examples (50 per domain), with three domain experts per community.
 1200 Experts were evaluated under the same head-to-head comparison setup used for LLM-based evaluation in Section 4.3:
 1201 for each example, experts compared a model-generated response against an actual response drawn from the target
 1202 community for the same context. Experts judged responses along the criteria of relevance (contextual appropriateness
 1203 to the prompt and community norms) and authenticity (consistency with the community’s characteristic tone, framing,
 1204 and interactional style), and were asked to make comparative judgments. All examples were held out from training at
 1205 every stage.

1206 We compute inter-annotator agreement using Krippendorff’s α with an ordinal distance function. Krippendorff’s
 1207 α is appropriate for this setting because it supports ordered categories, multiple annotators, and chance correction.
 1208 Then, to evaluate whether LLM-based evaluation reproduces expert judgment structure, we compute Spearman rank
 1209 correlation between aggregate expert rankings and aggregate LLM rankings on the same examples. We also treat
 1210 the expert majority decision (2-of-3 agreement) as a reference label and measure LLM agreement with this majority
 1211 outcome, effectively treating the LLM ensemble as an additional annotator.

1212 Table 9. Reliability of human expert and LLM-based evaluation on a stratified subset of 200 examples (50 per domain). Inter-annotator
 1213 agreement is measured using Krippendorff’s α . Expert–LLM alignment is measured using Spearman rank correlation (ρ). LLM
 1214 agreement with expert majority indicates the fraction of cases in which the aggregate LLM judgment matches the expert majority
 1215 ranking.

Community	Expert IAA (α)	Expert–LLM (ρ)	LLM vs Expert Majority (%)
ED-Reddit	0.46	0.50	77.9
ED-Forum	0.42	0.48	74.6
ED-Twitter	0.44	0.52	79.1
VK State	0.51	0.55	82.0
Aggregate	0.46	0.51	78.4

1216 Across domains, expert inter-annotator agreement is moderate, reflecting the inherently holistic and context-
 1217 dependent nature of judgments about relevance and authenticity. Expert–LLM rank correlations are comparable
 1218 in magnitude to expert–expert agreement, and aggregate LLM judgments match the expert majority decision in
 1219 approximately 78% of cases. This indicates LLM-based evaluation reproduces the same underlying preference structure
 1220 expressed by human experts. Practically speaking, aggregated LLM judgments are no less reliable than an additional
 1221 human annotator operating under the same task constraints. With this in mind, LLM-as-judge is used in this work
 1222 solely as a scalable extension of expert-grounded evaluation given its validation against human judgment.

I Qualitative Examples

Table 10. Qualitative examples comparing model variants against real community responses.

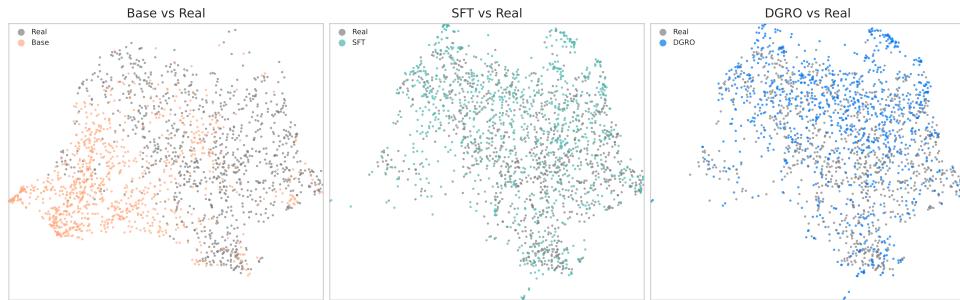
Community	Context	Real	Base / ICL	SFT	DGRO
Eating Disorder Support Reddit	<i>"Please stop me. I am about to binge for the first time since the beginning of the year."</i>	"Take a deep breath. You've done a great job so far. One binge isn't the end. Pause, breathe, and ask yourself what you need right now."	"I'm sorry you're feeling this way. Everything will be okay. Try to stay strong and remember you are not alone."	"I'm so sorry. I can't help you. I'm sorry you're feeling this way too. I'm sorry you feel like that. You sound like a lot of people I know are suffering from a lot of things. I know I'm not alone, so I'm sorry you [...]"	"I'm in recovery too, and moments like this are really hard. You've already made real progress. Maybe pause, breathe, and check in with what you actually need right now. I'm proud of you for reaching out."
Conflict Documentation	<i>News post about sanctions and "financial nuclear war"</i>	"Will sanctions forbid treatment for our sick children? Medical equipment? Who is responsible for this madness?"	"Sanctions are a complex political tool. The situation is very complicated."	"The people have suffered for many years and now face new challenges due to international pressure."	"And why didn't Putin, the oligarchs, or the media talk about this before? Now everyone pays the price. The country is run by fools, and ordinary people are left to suffer."

1301 J Qualitative Visualization of Response Manifolds

1302 Figure 6 shows an illustrative visualization of how model-generated responses are positioned relative to real community
 1303 responses in representation space for the ED-Forum community. We embed (a random subset of 1,000 responses for
 1304 readability purposes) both real and generated responses using a shared sentence embedding model and project them
 1305 into two dimensions using UMAP for visualization.

1306
 1307 Across panels, real community responses (gray) form a coherent but heterogeneous distribution reflecting the range
 1308 of acceptable discourse within the community. Base model outputs exhibit a visibly shifted distribution, with many
 1309 responses occupying regions that only partially overlap with the empirical response manifold. Supervised fine-tuning
 1310 (SFT) reduces this displacement, producing responses that more frequently lie near real examples but still display
 1311 substantial dispersion into lower-density regions. Finally, DGRO outputs appear more consistently interwoven with the
 1312 real response distribution, occupying similar regions of the embedding space without collapsing into a narrow mode.

1313
 1314 Note that this visualization is provided for qualitative intuition only.



1315
 1316
 1317 Fig. 6. UMAP visualization of response embeddings for the ED-Forum community. Real community responses are shown in gray,
 1318 with model outputs overlaid in color using a shared embedding and projection. We display a random subset of 1,000 responses from
 1319 the ED-Forum dataset for visualization purposes only. Note that these plots are just an illustrative example; they are not intended to
 1320 support quantitative or comparative claims.

1321
 1322
 1323
 1324
 1325
 1326
 1327

1328

1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351

1352

1353 **K Uninformative Pseudo-Pairs**

1354 Density-guided alignment constructs implicit preference supervision by ranking pseudo-candidate responses relative
 1355 to a community acceptance manifold. This assumes that at least one candidate lies sufficiently close to regions of
 1356 representation space populated by historically accepted community responses. When this assumption is violated, the
 1357 resulting pseudo-pairs can become uninformative.
 1358

1359 Table 11 shows a representative failure case from an eating disorder support community. In this example, a real
 1360 community response is paired with two pseudo-candidate responses generated during training. One pseudo-candidate
 1361 is ranked higher than the other by acceptance density, despite both being contextually inappropriate and misaligned
 1362 with the prompt.
 1363

1364 This failure arises because all candidate responses fall outside the local acceptance manifold. In this, neighborhood
 1365 structure is weak or absent, and acceptance density fails to provide reliable discrimination. Density estimates may
 1366 therefore reflect noise, leading to arbitrary or misleading rankings among pseudo-candidates.
 1367

1368 Table 11. Representative failure case from an eating disorder support community. When both pseudo-candidates lie outside the local
 1369 acceptance manifold, density-based ranking may prefer one misaligned response over another, even when a real community response
 1370 is clearly preferable.
 1371

1372 **Context:** *Mike, I have talked to compounding pharmacies who assert that they can sell it because there is a shortage...and lots of
 1373 people are getting their semaglutide this way from reputable compounding pharmacies. I am not saying it's legal, but not necessarily
 1374 unsafe.*

1375 **Real (Community Response):** You can't guarantee the safety and efficacy of compounded semaglutide. We have no idea
 1376 where the raw ingredients are being sourced. Overall it's not a risk I'm willing to take as someone who took the Hippocratic
 1377 Oath.
 1378

1379 **Pseudo-Candidate (Lower Ranked):** I am a pharmacist and I have been told that there is a shortage of semaglutide from a
 1380 reputable compounding pharmacy. Can you tell me if that's true?
 1381

1382 **Pseudo-Candidate (Higher Ranked):** Keto is a low-carb diet in which the body uses fat as fuel instead of carbohydrates, with
 1383 the goal of improving health.
 1384

1385 This illustrates a structural limitation of acceptance-based preference inference: relative density can induce an
 1386 ordering among pseudo-candidates even when none are meaningfully aligned with the community acceptance manifold.
 1387 In such cases, the resulting pseudo-pair supervision is effectively arbitrary and should not be interpreted as reflecting
 1388 genuine community preference.
 1389