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The State of Multilingual LLM Safety Research
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→ per-language accountability, worst-case reporting, and evaluations that reflect 
real multilingual use (not sanitized English)

Presenter: Patrick Gerard



Problem & Thesis
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An orc? Like Lord 
of the Rings?

Safety ≠ static refusal accuracy (averages hide 
failures).

Real risk = behavioral effects across 
languages/dialects, not just English.

Gaps flagged by the paper: code-switching, non-standard orthography, drift, 
jailbreak transfer, and lack of worst-case reporting.
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Safety ≠ static refusal accuracy (averages hide 
failures).

Real risk = behavioral effects across 
languages/dialects, not just English.

Gaps flagged by the paper: code-switching, non-standard orthography, drift, 
jailbreak transfer, and lack of worst-case reporting.

I hate orcs and all 
who support them.



The Issue with Current Methods
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If a sentence can flip meanings across role, 
language, and drift, then safety can’t be 
a one-time quiz.

It has to be risk 
science.



Safety as Risk Science
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Static quiz thinking Risk science

One-time refusal score, averaged Per-locale results with worst-case surfaced

Clean, monolingual prompts Code-switch, translit, orthography, real slang

Day-0 snapshot Temporal tracking (decay/return of failures)

Risk science: measure likelihood and impact of failures across 
languages and over time, under real usage patterns (translation, 
code-switching, slang drift).



Safety as Risk Science
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Risk science: measure likelihood and impact of failures across 
languages and over time, under real usage patterns (translation, 
code-switching, slang drift).

Where can failures spread?

What do they do to people?

How long do fixes hold?

Prioritize languages/dialects with 
highest spread.

Tune guardrails/deferral where 
impact is harmful.

Gate releases on persistence 
(don’t ship brittle fixes).



JT-Coef — Where can failures spread? (Portability Map)
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Why: We need to know which languages/dialects attacks jump to, and 
whether code-switching makes jumps easier.

How: Build it from two primitives
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Why: We need to know which languages/dialects attacks jump to, and 
whether code-switching makes jumps easier.

How: Build it from two primitives:
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Why: We need to know which languages/dialects attacks jump to, and 
whether code-switching makes jumps easier.
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Why: We need to know which languages/dialects attacks jump to, and 
whether code-switching makes jumps easier.



JT-Coef — Where can failures spread? (Portability Map)
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Hot Edge (RU→UA). Patch UA 
immediately.

Star denotes high CS-ASR

Hot rows export failures; hot columns 
import them. 
Use to prioritize red-team and 
gating.



JT-Coef — Where can failures spread? (Portability Map)
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Tall bar ⇒ brittle under mixing 
(needs stronger guardrails).

Short bar ⇒ robust to mixing (still 
verify with JT-Coef inbound).

Code-Switch Vulnerability by Language (CS-ASR*)



What do they do to people? Beyond Definitions — Harm as Mechanisms
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Othering is language that marks a group as 
less-than, dangerous, or outside the moral 
circle—often via euphemism, codewords, or 
narrative frames [1, 2, 3, 4].

Source: National Geographic

Social identity work shows how harm operates through 
frames:
identification → exclusion → threat → virtue → celebration
not just slurs; our target should be these mechanisms [1].
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Othering is language that marks a group as 
less-than, dangerous, or outside the moral 
circle—often via euphemism, codewords, or 
narrative frames [1, 2, 3, 4].

Source: National Geographic

Mechanism (brief) taxonomy:
● Dehumanization (animalization/objectification)
● Collective blame (group guilt)
● Threat rhetoric (invasion/contagion)
● Exclusion/punishment (remove rights, expel)
● Moral disgust (impurity/contamination)
● Euphemisms/codewords (benign token, hostile local 

meaning)

“They’re [subhuman-metaphor] 
who [threat-verb] our 

communities.”



What do they do to people? Why this Matters for Multilingual LLMs
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Othering is language that marks a group as 
less-than, dangerous, or outside the moral 
circle—often via euphemism, codewords, or 
narrative frames [1, 2, 3, 4].

Source: National Geographic

Real-world friction points:
● Polysemy & codewords: benign in one locale, toxic in 

another (e.g., fantasy terms used as coded slurs).
● Code-switching/translit: mixing scripts/languages hides 

cues; simple filters miss them.
● Role-gated knowledge: the model can behave as if it doesn’t 

know until context authorizes the coded sense.
● Translation drift: neutral content can pick up hostile framing 

(or vice-versa) when localized.

“They’re [subhuman-metaphor] 
who [threat-verb] our 

communities.”



FOPS — What do they do to people? (Impact by locale)
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We turn mechanisms of othering into a number per locale.

Measure the nudge. If fL(A)>fL(B), the assistant amplified othering; 
if fL(A)<fL(B) it dampened it.



FOPS — What do they do to people? (Impact by locale)
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We turn mechanisms of othering into a number per locale.

Setup (same input, same locale L):
● B = neutral/human baseline (masked)
● A = assistant output (masked + evidence)
● fL (⋅) = locale-tuned othering/fear detector 

[0,1]: classifier trained on synthetic + small 
real, masked, calibrated per locale



FOPS — What do they do to people? (Impact by locale)
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We turn mechanisms of othering into a number per locale.

How we report:
● Per-locale distributions + worst-case 

(not just means)
● By task (reply, RAG, translation, 

headline) and code-switch rate s
● Show deferral rate alongside FOPS 

(so “safety” isn’t just deferring)



FOPS — What do they do to people? (Impact by locale)
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We turn mechanisms of othering into a number per locale.

[group] often brings 
crime with them.

Example
 UA: f(A)=0.35, f(B)=0.18 → FOPS = +0.17 (amplified)
 EN: 0.12 − 0.14 → −0.02 (dampened)

What we do with it
 If FOPS(L) > 0 → tighten guardrails/decoding, defer, 
add local RAG, re-test.



CL-RTD — How we generate, stress, and score
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How We Setup Scalable Testing
Seed → Localize: translate, paraphrase, dialectalize to real-world forms.
Code-switch & translit: insert within-utterance mixing; homoglyph/spacing 
variants.
Execute: run prompts across models/policies; log 
outputs/refusals/uncertainty.
Score (two tracks):

● Adversarial: CL-ASR/CS-ASR → JT-Coef (where failures spread).
● Behavioral: fL  on A vs B → FOPS (what they do to people).

Replay monthly (drift): refresh slang/topics → MPS+BPS (do fixes hold?).



MPS + BPS — How long do fixes hold? (Safety half-life)
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Persistence of a mitigation as language drifts (paraphrase, 
slang, code-switch, translit, topical frames).

How we run it: After patch at t 0, replay CL-RTD monthly t1,…,tK. 
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Persistence of a mitigation as language drifts (paraphrase, 
slang, code-switch, translit, topical frames).

How we run it: After patch at t 0, replay CL-RTD monthly t1,…,tK. 



Takeaways — Moving From Refusals to Risk
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Safety as risk science:
We measure impact, spread, and persistence per language/dialect; 
not a one-time quiz.

Three dials:
JT-Coef → Where failures spread (portability map) 
FOPS → What they do to people (othering/fear by locale)  
MPS → How long fixes hold (safety half-life).

Real usage, not sanitized prompts:
Code-switching, translit (e.g., Arabizi), non-standard 
orthography,.

Engineering, not just eval:
Versioned CL-RTD generator, CI runs, dashboards, and ship gates: 
JT-Coef (worst-case), FOPS ≤ 0, MPS ≥ threshold.

pgerard@isi.edu

patrikgerard.bsky.social

patrickgerard.co
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